28 resultados para Cubic silsesquioxane
em BORIS: Bern Open Repository and Information System - Berna - Suiça
Resumo:
The numerical simulations of the magnetic properties of extended three-dimensional networks containing M(II) ions with an S = 5/2 ground-state spin have been carried out within the framework of the isotropic Heisenberg model. Analytical expressions fitting the numerical simulations for the primitive cubic, diamond, together with (10−3) cubic networks have all been derived. With these empirical formulas in hands, we can now extract the interaction between the magnetic ions from the experimental data for these networks. In the case of the primitive cubic network, these expressions are directly compared with those from the high-temperature expansions of the partition function. A fit of the experimental data for three complexes, namely [(N(CH3)4][Mn(N3)] 1, [Mn(CN4)]n 2, and [FeII(bipy)3][MnII2(ox)3] 3, has been carried out. The best fits were those obtained using the following parameters, J = −3.5 cm-1, g = 2.01 (1); J = −8.3 cm-1, g = 1.95 (2); and J = −2.0 cm-1, g = 1.95 (3).
Resumo:
Asynchronous level crossing sampling analog-to-digital converters (ADCs) are known to be more energy efficient and produce fewer samples than their equidistantly sampling counterparts. However, as the required threshold voltage is lowered, the number of samples and, in turn, the data rate and the energy consumed by the overall system increases. In this paper, we present a cubic Hermitian vector-based technique for online compression of asynchronously sampled electrocardiogram signals. The proposed method is computationally efficient data compression. The algorithm has complexity O(n), thus well suited for asynchronous ADCs. Our algorithm requires no data buffering, maintaining the energy advantage of asynchronous ADCs. The proposed method of compression has a compression ratio of up to 90% with achievable percentage root-mean-square difference ratios as a low as 0.97. The algorithm preserves the superior feature-to-feature timing accuracy of asynchronously sampled signals. These advantages are achieved in a computationally efficient manner since algorithm boundary parameters for the signals are extracted a priori.
Resumo:
OBJECTIVES:: To determine prevalence and characteristics of end-stage renal diseases (ESRD) [dialysis and renal transplantation (RT)] among European HIV-infected patients. METHODS:: Cross-sectional multicenter survey of EuroSIDA clinics during 2008. RESULTS:: Prevalence of ESRD was 0.5%. Of 122 patients with ESRD 96 were on dialysis and 26 had received a RT. Median age was 47 years, 73% were males and 43% were black. Median duration of HIV infection was 11 years. Thirty-three percent had prior AIDS; 91% were receiving antiretrovirals; and 88% had undetectable viral load. Median CD4T-cell count was 341 cells per cubic millimetre; 20.5% had hepatitis C coinfection. Most frequent causes of ESRD were HIV-associated nephropathy (46%) and other glomerulonephritis (28%). Hemodialysis (93%) was the most common dialysis modality; 34% of patients were on the RT waiting list. A poor HIV control was the reason for exclusion from RT waiting list in 22.4% of cases. All the RT recipients were all alive at the time of the survey. Acute rejection was reported in 8 patients (30%). Functioning graft was present in 21 (80%). CONCLUSIONS:: This is the first multinational cross-sectional study of ESRD among European HIV population. Low prevalence of ESRD was found. Two-thirds of patients were excluded from RT for non-HIV/AIDS-related pathologies. Most patients had a functioning graft despite a high acute rejection rate.
Resumo:
In addition to particle size and surface chemistry, the shape of particles plays an important role in their wetting and displacement by the surfactant film in the lung. The role of particle shape was the subject of our investigations using a model system consisting of a modified Langmuir-Wilhelmy surface balance. We measured the influence of sharp edges (lines) and other highly curved surfaces, including sharp corners or spikes, of different particles on the spreading of a dipalmitoylphosphatidyl (DPPC) film. The edges of cylindrical sapphire plates (circular curved edges, 1.65 mm radius) were wetted at a surface tension of 10.7 mJ/m2 (standard error (SE) = 0.45, n = 20) compared with that of 13.8 mJ/m2 (SE = 0.20, n = 20) for cubic sapphire plates (straight linear edges, edge length 3 mm) (p < 0.05). The top surfaces of the sapphire plates (cubic and cylindrical) were wetted at 8.4 mJ/m2 (SE = 0.54, n = 20) and 9.1 mJ/m2 (SE = 0.50, n = 20), respectively, but the difference was not significant (p > 0.05). The surfaces of the plates showed significantly higher resistance to spreading compared to that of the edges, as substantially lower surface tensions were required to initiate wetting (p < 0.05). Similar results were found for talc particles, were the edges of macro- and microcrystalline particles were wetted at 7.2 mJ/m2 (SE = 0.52, n = 20) and 8.2 mJ/m2 (SE = 0.30, n = 20) (p > 0.05), respectively, whereas the surfaces were wetted at 3.8 mJ/m2 (SE = 0.89, n = 20) and 5.8 mJ/m2 (SE = 0.52, n = 20) (p < 0.05), respectively. Further experiments with pollen of malvaceae and maize (spiky and fine knobbly surfaces) were wetted at 10.0 mJ/m2 (SE = 0.52, n = 10) and 22.75 mJ/m2 (SE = 0.81, n = 10), respectively (p < 0.05). These results show that resistance to spreading of a DPPC film on various surfaces is dependent on the extent these surfaces are curved. This is seen with cubic sapphire plates which have at their corners a radius of curvature of about 0.75 microm, spiky malvaceae pollen with an even smaller radius on top of their spikes, or talc with various highly curved surfaces. These highly curved surfaces resisted wetting by the DPPC film to a higher degree than more moderately curved surfaces such as those of cylindrical sapphire plates, maize pollens, or polystyrene spheres, which have a surface free energy similar to that of talc but a smooth surface. The macroscopic plane surfaces of the particles demonstrated the greatest resistance to spreading. This was explained by the extremely fine grooves in the nanometer range, as revealed by electron microscopy. In summary, to understand the effects of airborne particles retained on the surfaces of the respiratory tract, and ultimately their pathological potential, not only the particle size and surface chemistry but also the particle shape should be taken in consideration.
Resumo:
This paper describes a method for DRR generation as well as for volume gradients projection using hardware accelerated 2D texture mapping and accumulation buffering and demonstrates its application in 2D-3D registration of X-ray fluoroscopy to CT images. The robustness of the present registration scheme are guaranteed by taking advantage of a coarse-to-fine processing of the volume/image pyramids based on cubic B-splines. A human cadaveric spine specimen together with its ground truth was used to compare the present scheme with a purely software-based scheme in three aspects: accuracy, speed, and capture ranges. Our experiments revealed an equivalent accuracy and capture ranges but with much shorter registration time with the present scheme. More specifically, the results showed 0.8 mm average target registration error, 55 second average execution time per registration, and 10 mm and 10° capture ranges for the present scheme when tested on a 3.0 GHz Pentium 4 computer.
Resumo:
The problem of re-sampling spatially distributed data organized into regular or irregular grids to finer or coarser resolution is a common task in data processing. This procedure is known as 'gridding' or 're-binning'. Depending on the quantity the data represents, the gridding-algorithm has to meet different requirements. For example, histogrammed physical quantities such as mass or energy have to be re-binned in order to conserve the overall integral. Moreover, if the quantity is positive definite, negative sampling values should be avoided. The gridding process requires a re-distribution of the original data set to a user-requested grid according to a distribution function. The distribution function can be determined on the basis of the given data by interpolation methods. In general, accurate interpolation with respect to multiple boundary conditions of heavily fluctuating data requires polynomial interpolation functions of second or even higher order. However, this may result in unrealistic deviations (overshoots or undershoots) of the interpolation function from the data. Accordingly, the re-sampled data may overestimate or underestimate the given data by a significant amount. The gridding-algorithm presented in this work was developed in order to overcome these problems. Instead of a straightforward interpolation of the given data using high-order polynomials, a parametrized Hermitian interpolation curve was used to approximate the integrated data set. A single parameter is determined by which the user can control the behavior of the interpolation function, i.e. the amount of overshoot and undershoot. Furthermore, it is shown how the algorithm can be extended to multidimensional grids. The algorithm was compared to commonly used gridding-algorithms using linear and cubic interpolation functions. It is shown that such interpolation functions may overestimate or underestimate the source data by about 10-20%, while the new algorithm can be tuned to significantly reduce these interpolation errors. The accuracy of the new algorithm was tested on a series of x-ray CT-images (head and neck, lung, pelvis). The new algorithm significantly improves the accuracy of the sampled images in terms of the mean square error and a quality index introduced by Wang and Bovik (2002 IEEE Signal Process. Lett. 9 81-4).
Resumo:
BACKGROUND The possible impact of coinfection with the Kaposi sarcoma-associated herpes virus (KSHV) on the response to antiretroviral therapy (ART) is unknown. Prospective studies are rare, particularly in Africa. METHODS We enrolled a prospective cohort of HIV-infected adults initiating ART in Johannesburg, South Africa. The subjects were defined as seropositive to KSHV if they were reactive to either KSHV lytic K8.1 or latent Orf73 antigen or to both. The subjects were followed from ART initiation until 18 months of treatment. HIV viral load and CD4 counts were tested 6 monthly. Linear generalized estimating and log-binomial regression models were used to estimate the effect of KSHV infection on immunologic recovery and response and HIV viral load suppression within 18 months after ART initiation. RESULTS Three hundred eighty-five subjects initiating ART from November 2008 to March 2009 were considered to be eligible including 184 (48%) KSHV+. The KSHV+ group was similar to the KSHV- in terms of age, gender, initiating CD4 count, body mass index, tuberculosis, and hemoglobin levels. The KSHV+ group gained a similar number of cells at 6 [difference of 10 cells per cubic millimeter, 95% confidence interval (CI): -11 to 31], 12 (3 cells per cubic millimeter, 95% CI: -19 to 25), and 18 months (24 cells per cubic millimeter, 95% CI: -13 to 61) compared with that gained by the KSHV- group. Adjusted relative risk of failure to suppress viral load to <400 copies per milliliter (1.03; 95% CI: 0.90 to 1.17) were similar for KSHV+ and KSHV- by 6 months on treatment. CONCLUSIONS In a population with a high KSHV prevalence, HIV-positive adults coinfected with KSHV achieved similar immunologic and virologic responses to ART early after treatment initiation compared with those with KSHV-.
Resumo:
BACKGROUND In many resource-limited settings monitoring of combination antiretroviral therapy (cART) is based on the current CD4 count, with limited access to HIV RNA tests or laboratory diagnostics. We examined whether the CD4 count slope over 6 months could provide additional prognostic information. METHODS We analyzed data from a large multicohort study in South Africa, where HIV RNA is routinely monitored. Adult HIV-positive patients initiating cART between 2003 and 2010 were included. Mortality was analyzed in Cox models; CD4 count slope by HIV RNA level was assessed using linear mixed models. RESULTS About 44,829 patients (median age: 35 years, 58% female, median CD4 count at cART initiation: 116 cells/mm) were followed up for a median of 1.9 years, with 3706 deaths. Mean CD4 count slopes per week ranged from 1.4 [95% confidence interval (CI): 1.2 to 1.6] cells per cubic millimeter when HIV RNA was <400 copies per milliliter to -0.32 (95% CI: -0.47 to -0.18) cells per cubic millimeter with >100,000 copies per milliliter. The association of CD4 slope with mortality depended on current CD4 count: the adjusted hazard ratio (aHRs) comparing a >25% increase over 6 months with a >25% decrease was 0.68 (95% CI: 0.58 to 0.79) at <100 cells per cubic millimeter but 1.11 (95% CI: 0.78 to 1.58) at 201-350 cells per cubic millimeter. In contrast, the aHR for current CD4 count, comparing >350 with <100 cells per cubic millimeter, was 0.10 (95% CI: 0.05 to 0.20). CONCLUSIONS Absolute CD4 count remains a strong risk for mortality with a stable effect size over the first 4 years of cART. However, CD4 count slope and HIV RNA provide independently added to the model.
Resumo:
BACKGROUND Results of epidemiological studies linking census with mortality records may be affected by unlinked deaths and changes in cause of death classification. We examined these issues in the Swiss National Cohort (SNC). METHODS The SNC is a longitudinal study of the entire Swiss population, based on the 1990 (6.8 million persons) and 2000 (7.3 million persons) censuses. Among 1,053,393 deaths recorded 1991-2007 5.4% could not be linked using stringent probabilistic linkage. We included the unlinked deaths using pragmatic linkages and compared mortality rates for selected causes with official mortality rates. We also examined the impact of the 1995 change in cause of death coding from version 8 (with some additional rules) to version 10 of the International Classification of Diseases (ICD), using Poisson regression models with restricted cubic splines. Finally, we compared results from Cox models including and excluding unlinked deaths of the association of education, marital status, and nationality with selected causes of death. RESULTS SNC mortality rates underestimated all cause mortality by 9.6% (range 2.4%-17.9%) in the 85+ population. Underestimation was less pronounced in years nearer the censuses and in the 75-84 age group. After including 99.7% of unlinked deaths, annual all cause SNC mortality rates were reflecting official rates (relative difference between -1.4% and +1.8%). In the 85+ population the rates for prostate and breast cancer dropped, by 16% and 21% respectively, between 1994 and 1995 coincident with the change in cause of death coding policy. For suicide in males almost no change was observed. Hazard ratios were only negligibly affected by including the unlinked deaths. A sudden decrease in breast (21% less, 95% confidence interval: 12%-28%) and prostate (16% less, 95% confidence interval: 7%-23%) cancer mortality rates in the 85+ population coincided with the 1995 change in cause of death coding policy. CONCLUSIONS Unlinked deaths bias analyses of absolute mortality rates downwards but have little effect on relative mortality. To describe time trends of cause-specific mortality in the SNC, accounting for the unlinked deaths and for the possible effect of change in death certificate coding was necessary.
Resumo:
Background: Accelerometry has been established as an objective method that can be used to assess physical activity behavior in large groups. The purpose of the current study was to provide a validated equation to translate accelerometer counts of the triaxial GT3X into energy expenditure in young children. Methods: Thirty-two children aged 5–9 years performed locomotor and play activities that are typical for their age group. Children wore a GT3X accelerometer and their energy expenditure was measured with indirect calorimetry. Twenty-one children were randomly selected to serve as development group. A cubic 2-regression model involving separate equations for locomotor and play activities was developed on the basis of model fit. It was then validated using data of the remaining children and compared with a linear 2-regression model and a linear 1-regression model. Results: All 3 regression models produced strong correlations between predicted and measured MET values. Agreement was acceptable for the cubic model and good for both linear regression approaches. Conclusions: The current linear 1-regression model provides valid estimates of energy expenditure for ActiGraph GT3X data for 5- to 9-year-old children and shows equal or better predictive validity than a cubic or a linear 2-regression model.
Resumo:
Nonlinear computational analysis of materials showing elasto-plasticity or damage relies on knowledge of their yield behavior and strengths under complex stress states. In this work, a generalized anisotropic quadric yield criterion is proposed that is homogeneous of degree one and takes a convex quadric shape with a smooth transition from ellipsoidal to cylindrical or conical surfaces. If in the case of material identification, the shape of the yield function is not known a priori, a minimization using the quadric criterion will result in the optimal shape among the convex quadrics. The convexity limits of the criterion and the transition points between the different shapes are identified. Several special cases of the criterion for distinct material symmetries such as isotropy, cubic symmetry, fabric-based orthotropy and general orthotropy are presented and discussed. The generality of the formulation is demonstrated by showing its degeneration to several classical yield surfaces like the von Mises, Drucker–Prager, Tsai–Wu, Liu, generalized Hill and classical Hill criteria under appropriate conditions. Applicability of the formulation for micromechanical analyses was shown by transformation of a criterion for porous cohesive-frictional materials by Maghous et al. In order to demonstrate the advantages of the generalized formulation, bone is chosen as an example material, since it features yield envelopes with different shapes depending on the considered length scale. A fabric- and density-based quadric criterion for the description of homogenized material behavior of trabecular bone is identified from uniaxial, multiaxial and torsional experimental data. Also, a fabric- and density-based Tsai–Wu yield criterion for homogenized trabecular bone from in silico data is converted to an equivalent quadric criterion by introduction of a transformation of the interaction parameters. Finally, a quadric yield criterion for lamellar bone at the microscale is identified from a nanoindentation study reported in the literature, thus demonstrating the applicability of the generalized formulation to the description of the yield envelope of bone at multiple length scales.
Resumo:
Identifying a human body stimulus involves mentally rotating an embodied spatial representation of one's body (motoric embodiment) and projecting it onto the stimulus (spatial embodiment). Interactions between these two processes (spatial and motoric embodiment) may thus reveal cues about the underlying reference frames. The allocentric visual reference frame, and hence the perceived orientation of the body relative to gravity, was modulated using the York Tumbling Room, a fully furnished cubic room with strong directional cues that can be rotated around a participant's roll axis. Sixteen participants were seated upright (relative to gravity) in the Tumbling Room and made judgments about body and hand stimuli that were presented in the frontal plane at orientations of 0°, 90°, 180° (upside down), or 270° relative to them. Body stimuli have an intrinsic visual polarity relative to the environment whereas hands do not. Simultaneously the room was oriented 0°, 90°, 180° (upside down), or 270° relative to gravity resulting in sixteen combinations of orientations. Body stimuli were more accurately identified when room and body stimuli were aligned. However, such congruency did not facilitate identifying hand stimuli. We conclude that static allocentric visual cues can affect embodiment and hence performance in an egocentric mental transformation task. Reaction times to identify either hands or bodies showed no dependence on room orientation.
Resumo:
BACKGROUND Lead exposure is associated with low birth-weight. The objective of this study is to determine whether lead exposure is associated with lower body weight in children, adolescents and adults. METHODS We analyzed data from NHANES 1999-2006 for participants aged ≥3 using multiple logistic and multivariate linear regression. Using age- and sex-standardized BMI Z-scores, overweight and obese children (ages 3-19) were classified by BMI ≥85 th and ≥95 th percentiles, respectively. The adult population (age ≥20) was classified as overweight and obese with BMI measures of 25-29.9 and ≥30, respectively. Blood lead level (BLL) was categorized by weighted quartiles. RESULTS Multivariate linear regressions revealed a lower BMI Z-score in children and adolescents when the highest lead quartile was compared to the lowest lead quartile (β (SE)=-0.33 (0.07), p<0.001), and a decreased BMI in adults (β (SE)=-2.58 (0.25), p<0.001). Multiple logistic analyses in children and adolescents found a negative association between BLL and the percentage of obese and overweight with BLL in the highest quartile compared to the lowest quartile (OR=0.42, 95% CI: 0.30-0.59; and OR=0.67, 95% CI: 0.52-0.88, respectively). Adults in the highest lead quartile were less likely to be obese (OR=0.42, 95% CI: 0.35-0.50) compared to those in the lowest lead quartile. Further analyses with blood lead as restricted cubic splines, confirmed the dose-relationship between blood lead and body weight outcomes. CONCLUSIONS BLLs are associated with lower body mass index and obesity in children, adolescents and adults.
Resumo:
As our population ages, more individuals suffer from osteoporosis. This disease leads to impaired trabecular architecture and increased fracture risk. It is essential to understand how morphological and mechanical properties of the cancellous bone are related. Morphologyelasticity relationships based on bone volume fraction (BV/TV) and fabric anisotropy explain up to 98% of the variation in elastic properties. Yet, other morphological variables such as individual trabeculae segmentation (ITS) and trabecular bone score (TBS) could improve the stiffness predictions. A total of 743 micro-computed tomography reconstructions of cubic trabecular bone samples extracted from femur, radius, vertebrae and iliac crest were analysed. Their morphology was assessed via 25 variables and their stiffness tensor (inline image) was computed from six independent load cases using micro finite element analyses. Variance inflation factors were calculated to evaluate collinearity between morphological variables and decide upon their inclusion in morphology-elasticity relationships. The statistically admissible morphological variables were included in a multi-linear regression modelling the dependent variable inline image. The contribution of each independent variable was evaluated (ANOVA). Our results show that BV/TV is the best determinant of inline image (inline image=0.889), especially in combination with fabric (inline image=0.968). Including the other independent predictors hardly affected the amount of variance explained by the model (inline image=0.975). Across all anatomical sites, BV/TV explained 87% of the variance of the bone elastic properties. Fabric further described 10% of the bone stiffness, but the improvement in variance explanation by adding other independent factors was marginal (<1%). These findings confirm that BV/TV and fabric are the best determinants of trabecular bone stiffness and show, against common belief, that other morphological variables do not bring any further contribution. These overall conclusions remain to be confirmed for specific bone diseases and post-elastic properties.