26 resultados para Cryo-EM

em BORIS: Bern Open Repository and Information System - Berna - Suiça


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Lamellar bodies are the storage sites for lung surfactant within type II alveolar epithelial cells. The structure-function models of lamellar bodies are based on microscopic analyses of chemically fixed tissue. Despite available alternative fixation methods that are less prone to artifacts, such as cryofixation by high-pressure freezing, the nature of the lung, being mostly air filled, makes it difficult to take advantage of these improved methods. In this paper, we propose a new approach and show for the first time the ultrastructure of intracellular lamellar bodies based on cryo-electron microscopy of vitreous sections in the range of nanometer resolution. Thus, unspoiled by chemical fixation, dehydration and contrasting agents, a close to native structure is revealed. Our approach uses perfluorocarbon to substitute the air in the alveoli. Lung tissue was subsequently high-pressure frozen, cryosectioned and observed in a cryo-electron microscope. The lamellar bodies clearly show a tight lamellar morphology. The periodicity of these lamellae was 7.3 nm. Lamellar bifurcations were observed in our cryosections. The technical approach described in this paper allows the examination of the native cellular ultrastructure of the surfactant system under near in vivo conditions, and therefore opens up prospectives for scrutinizing various theories of lamellar body biogenesis, exocytosis and recycling.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We have quantitated the degree of structural preservation in cryo-sections of a vitrified biological specimen. Previous studies have used sections of periodic specimens to assess the resolution present, but preservation before sectioning was not assessed and so the damage due particularly to cutting was not clear. In this study large single crystals of lysozyme were vitrified and from these X-ray diffraction patterns extending to better than 2.1A were obtained. The crystals were high pressure frozen in 30% dextran, and cryo-sectioned using a diamond knife. In the best case, preservation to a resolution of 7.9A was shown by electron diffraction, the first observation of sub-nanometre structural preservation in a vitreous section.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The removal of nonretrievable implant components represents a challenge in implant dentistry. The mechanical approach involves the risk of damaging the implant connection or the bone-to-implant interface. This case report describes a cryo-mechanical approach for the safe removal of a nonretrievable implant component. A patient had an implant surgically placed in a private practice. When the patient returned to the restorative dentist to make a definitive impression, the healing abutment could not be loosened. The patient was referred to the Division of Fixed Prosthodontics (University of Bern, Switzerland), where the stripped screw hole was enlarged with a special drill from a service kit of the implant provider. Although an extraction bolt was screwed into the opening and the torque ratchet was activated, the healing abutment would not loosen. A novel approach was attempted whereby the healing abutment was cooled with dry ice (CO2). The cooling effect seemingly caused shrinkage of the healing abutment and a reduction of the connection forces between the implant and the nonretrievable component. The approach of creating an access hole for the application of reverse torque via the extraction bolt in combination with the thermal effect led to the successful removal of the blocked component. Neither the implant connection nor the bone-to-implant interface was damaged. The combined cryo-mechanical procedure allowed the implant to be successfully restored.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Liquid crystals (LCs) represent a challenging group of materials for direct transmission electron microscopy (TEM) studies due to the complications in specimen preparation and the severe radiation damage. In this paper, we summarize a series of specimen preparation methods, including thin film and cryo-sectioning approaches, as a comprehensive toolset enabling high-resolution direct cryo-TEM observation of a broad range of LCs. We also present comparative analysis using cryo-TEM and replica freeze-fracture TEM on both thermotropic and lyotropic LCs. In addition to the revisits of previous practices, some new concepts are introduced, e.g., suspended thermotropic LC thin films, combined high-pressure freezing and cryo-sectioning of lyotropic LCs, and the complementary applications of direct TEM and indirect replica TEM techniques. The significance of subnanometer resolution cryo-TEM observation is demonstrated in a few important issues in LC studies, including providing direct evidences for the existence of nanoscale smectic domains in nematic bent-core thermotropic LCs, comprehensive understanding of the twist-bend nematic phase, and probing the packing of columnar aggregates in lyotropic chromonic LCs. Direct TEM observation opens ways to a variety of TEM techniques, suggesting that TEM (replica, cryo, and in situ techniques), in general, may be a promising part of the solution to the lack of effective structural probe at the molecular scale in LC studies. Microsc. Res. Tech. 77:754-772, 2014. © 2014 Wiley Periodicals, Inc.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

High-resolution structural information on optimally preserved bacterial cells can be obtained with cryo-electron microscopy of vitreous sections. With the help of this technique, the existence of a periplasmic space between the plasma membrane and the thick peptidoglycan layer of the gram-positive bacteria Bacillus subtilis and Staphylococcus aureus was recently shown. This raises questions about the mode of polymerization of peptidoglycan. In the present study, we report the structure of the cell envelope of three gram-positive bacteria (B. subtilis, Streptococcus gordonii, and Enterococcus gallinarum). In the three cases, a previously undescribed granular layer adjacent to the plasma membrane is found in the periplasmic space. In order to better understand how nascent peptidoglycan is incorporated into the mature peptidoglycan, we investigated cellular regions known to represent the sites of cell wall production. Each of these sites possesses a specific structure. We propose a hypothetic model of peptidoglycan polymerization that accommodates these differences: peptidoglycan precursors could be exported from the cytoplasm to the periplasmic space, where they could diffuse until they would interact with the interface between the granular layer and the thick peptidoglycan layer. They could then polymerize with mature peptidoglycan. We report cytoplasmic structures at the E. gallinarum septum that could be interpreted as cytoskeletal elements driving cell division (FtsZ ring). Although immunoelectron microscopy and fluorescence microscopy studies have demonstrated the septal and cytoplasmic localization of FtsZ, direct visualization of in situ FtsZ filaments has not been obtained in any electron microscopy study of fixed and dehydrated bacteria.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Owing to their pathogenical role and unique ability to exist both as soluble proteins and transmembrane complexes, pore-forming toxins (PFTs) have been a focus of microbiologists and structural biologists for decades. PFTs are generally secreted as water-soluble monomers and subsequently bind the membrane of target cells. Then, they assemble into circular oligomers, which undergo conformational changes that allow membrane insertion leading to pore formation and potentially cell death. Aerolysin, produced by the human pathogen Aeromonas hydrophila, is the founding member of a major PFT family found throughout all kingdoms of life. We report cryo-electron microscopy structures of three conformational intermediates and of the final aerolysin pore, jointly providing insight into the conformational changes that allow pore formation. Moreover, the structures reveal a protein fold consisting of two concentric β-barrels, tightly kept together by hydrophobic interactions. This fold suggests a basis for the prion-like ultrastability of aerolysin pore and its stoichiometry.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Bacteria are generally difficult specimens to prepare for conventional resin section electron microscopy and mycobacteria, with their thick and complex cell envelope layers being especially prone to artefacts. Here we made a systematic comparison of different methods for preparing Mycobacterium smegmatis for thin section electron microscopy analysis. These methods were: (1) conventional preparation by fixatives and epoxy resins at ambient temperature. (2) Tokuyasu cryo-section of chemically fixed bacteria. (3) rapid freezing followed by freeze substitution and embedding in epoxy resin at room temperature or (4) combined with Lowicryl HM20 embedding and ultraviolet (UV) polymerization at low temperature and (5) CEMOVIS, or cryo electron microscopy of vitreous sections. The best preservation of bacteria was obtained with the cryo electron microscopy of vitreous sections method, as expected, especially with respect to the preservation of the cell envelope and lipid bodies. By comparison with cryo electron microscopy of vitreous sections both the conventional and Tokuyasu methods produced different, undesirable artefacts. The two different types of freeze-substitution protocols showed variable preservation of the cell envelope but gave acceptable preservation of the cytoplasm, but not lipid bodies, and bacterial DNA. In conclusion although cryo electron microscopy of vitreous sections must be considered the 'gold standard' among sectioning methods for electron microscopy, because it avoids solvents and stains, the use of optimally prepared freeze substitution also offers some advantages for ultrastructural analysis of bacteria.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

High-resolution microscopy techniques provide a plethora of information on biological structures from the cellular level down to the molecular level. In this review, we present the unique capabilities of transmission electron and atomic force microscopy to assess the structure, oligomeric state, function and dynamics of channel and transport proteins in their native environment, the lipid bilayer. Most importantly, membrane proteins can be visualized in the frozen-hydrated state and in buffer solution by cryo-transmission electron and atomic force microscopy, respectively. We also illustrate the potential of the scintillation proximity assay to study substrate binding of detergent-solubilized transporters prior to crystallization and structural characterization.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The calculation of projection structures (PSs) from Protein Data Bank (PDB)-coordinate files of membrane proteins is not well-established. Reports on such attempts exist but are rare. In addition, the different procedures are barely described and thus difficult if not impossible to reproduce. Here we present a simple, fast and well-documented method for the calculation and visualization of PSs from PDB-coordinate files of membrane proteins: the projection structure visualization (PSV)-method. The PSV-method was successfully validated using the PS of aquaporin-1 (AQP1) from 2D crystals and cryo-transmission electron microscopy, and the PDB-coordinate file of AQP1 determined from 3D crystals and X-ray crystallography. Besides AQP1, which is a relatively rigid protein, we also studied a flexible membrane transport protein, i.e. the L-arginine/agmatine antiporter AdiC. Comparison of PSs calculated from the existing PDB-coordinate files of substrate-free and L-arginine-bound AdiC indicated that conformational changes are detected in projection. Importantly, structural differences were found between the PSV-method calculated PSs of the detergent-solubilized AdiC proteins and the PS from cryo-TEM of membrane-embedded AdiC. These differences are particularly exciting since they may reflect a different conformation of AdiC induced by the lateral pressure in the lipid bilayer.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A microbiopsy system was developed to overcome long sampling times for tissues before they are cryo-fixed by high-pressure freezing. A commercially available biopsy gun was adapted to the needs of small-organ excisions, and biopsy needles were modified to allow small samples (0.6 mm x 1.2 mm x 0.3 mm) to be taken. Specimen platelets with a central slot of the same dimensions as the biopsy are used. A self-made transfer device (in the meantime optimized by Leica-Microsystems [Vienna, Austria]) coordinates the transfer of the excised sample from the biopsy needle into the platelet slot and the subsequent loading in a specimen holder, which is then introduced into a high-pressure freezer (Leica EM PACT; Leica Microsystems, Vienna, Austria). Thirty seconds preparation time is needed from excision until high-pressure freezing. Brain, liver, kidney and muscle excisions of anesthetised rats are shown to be well frozen.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The objective of modern transmission electron microscopy (TEM) in life science is to observe biological structures in a state as close as possible to the living organism. TEM samples have to be thin and to be examined in vacuum; therefore only solid samples can be investigated. The most common and popular way to prepare samples for TEM is to subject them to chemical fixation, staining, dehydration, and embedding in a resin (all of these steps introduce considerable artifacts) before investigation. An alternative is to immobilize samples by cooling. High pressure freezing is so far the only approach to vitrify (water solidification without ice crystal formation) bulk biological samples of about 200 micrometer thick. This method leads to an improved ultrastructural preservation. After high pressure freezing, samples have to be subjected to follow-up procedure, such as freeze-substitution and embedding. The samples can also be sectioned into frozen hydrated sections and analyzed in a cryo-TEM. Also for immunocytochemistry, high pressure freezing is a good and practicable way.

Relevância:

10.00% 10.00%

Publicador: