40 resultados para Crustal anatexis

em BORIS: Bern Open Repository and Information System - Berna - Suiça


Relevância:

60.00% 60.00%

Publicador:

Resumo:

In the forearc of the Andean active margin in southwest Ecuador, the El Oro metamorphic complex exhibits a well exposed tilted forearc section partially migmatized. We used Raman spectroscopy on carbonaceous matter (RSCM) thermometry and pseudosections coupled with mineralogical and textural studies to constrain the pressure–temperature (P–T) evolution of the El Oro metamorphic complex during Triassic times. Our results show that anatexis of the continental crust occurred by white-mica and biotite dehydration melting along a 10 km thick crustal domain (from 4.5 to 8 kbar) with increasing temperature from 650 to 700 °C. In the biotite dehydration melting zone, temperature was buffered at 750–820 °C in a 5 km thick layer. The estimated average thermal gradient during peak metamorphism is of 30 °C/km within the migmatitic domain can be partitioned into two apparent gradients parts. The upper part from surface to 7 km depth records a 40–45 °C/km gradient. The lower part records a quasi-adiabatic geotherm with a 10 °C/km gradient consistent with an isothermal melting zone. Migmatites U–Th–Pb geochronology yielded zircon and monazite ages of 229.3 ± 2.1 Ma and 224.5 ± 2.3 Ma, respectively. This thermal event generated S-type magmatism (the Marcabeli granitoid) and was immediately followed by underplating of the high-pressure low-temperature (HP-LT) Arenillas–Panupalí unit at 225.8 ± 1.8 Ma. The association of high-temperature low-pressure (HT-LP) migmatites with HP-LT unit constitutes a new example of a paired metamorphic belt along the South American margin. We propose that in addition to crustal thinning, underplating of the Piedras gabbroic unit before 230 Ma provided the heat source necessary to foster crustal anatexis. Furthermore, its MORB signature shows that the asthenosphere was involved as the source of the heat anomaly. S-type felsic magmatism is widespread during this time and suggests that a large-scale thermal anomaly affected a large part of the South American margin during the late Triassic. We propose that crustal anatexis is related to an anomaly that arose during subduction of the Panthalassa ocean under the South American margin. Slab verticalization or slab break-off can be invoked as the origin of the upwelling of the asthenosphere.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We analysed the Mo isotope composition of a comprehensive series of molybdenite samples from the porphyry- type Questa deposit (NM, USA), as well as one rhyolite and one granite sample, directly associated with the Mo mineralization. The δ98Mo of the molybdenites ranges between −0.48‰ and +0.40‰, with a median at −0.05‰. The median Mo isotope composition increases from early magmatic (−0.29‰) to hydrothermal (−0.05‰) breccia mineralization (median bulk breccia = −0.17‰) to late stockwork veining (+0.22‰). Moreover, variations of up to 0.34‰ are found between different molybdenite crystals within an individual hand specimen. The rhyolite sample with 0.12 μg g−1 Mo has δ98Mo = −0.57‰ and is lighter than all molybde- nites from the Questa deposit, interpreted to represent the igneous leftover after aqueous ore fluid exsolution. We recognize three Mo isotope fractionation processes that occur between about 700 and 350 °C, affecting the Mo iso- tope composition of magmatic–hydrothermal molybdenites. Δ1Mo: Minerals preferentially incorporate light Mo isotopes during progressive fractional crystallization in subvolcanic magma reservoirs, leaving behind a melt enriched in heavy Mo isotopes. Δ2Mo: Magmatic–hydrothermal fluids preferentially incorporate heavy Mo iso- topes upon fluid exsolution. Δ3Mo: Light Mo isotopes get preferentially incorporated in molybdenite during crys- tallization from an aqueous fluid, leaving behind a hydrothermal fluid that gets heavier with progressive molybdenite crystallization. The sum of all three fractionation processes produces molybdenites that record heavier δ98Mo compositions than their source magmas. This implies that the mean δ98Mo of molybdenites published so far (~0.4‰) likely represents a maximum value for the Mo isotope composition of Phanerozoic igneous upper crust.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Microstructures and textures of calcite mylonites from the Morcles nappe large-scale shear zone in southwestern Switzerland develop principally as a function of 1) extrinsic physical parameters including temperature, stress, strain, strain rate and 2) intrinsic parameters, such as mineral composition. We collected rock samples at a single location from this shear zone, on which laboratory ultrasonic velocities, texture and microstructures were investigated and quantified. The samples had different concentration of secondary mineral phases (< 5 up to 40 vol.%). Measured seismic P wave anisotropy ranges from 6.5% for polyphase mylonites (~ 40 vol.%) to 18.4% in mylonites with < 5 vol.% secondary phases. Texture strength of calcite is the main factor governing the seismic P wave anisotropy. Measured S wave splitting is generally highest in the foliation plane, but its origin is more difficult to explain solely by calcite texture. Additional texture measurements were made on calcite mylonites with low concentration of secondary phases (≤ 10 vol.%) along the metamorphic gradient of the shear zone (15 km distance). A systematic increase in texture strength is observed moving from the frontal part of the shear zone (anchimetamorphism; 280 °C) to the higher temperature, basal part (greenschist facies; 350–400 °C). Calculated P wave velocities become increasingly anisotropic towards the high-strain part of the nappe, from an average of 5.8% in the frontal part to 13.2% in the root of the basal part. Secondary phases raise an additional complexity, and may act either to increase or decrease seismic anisotropy of shear zone mylonites. In light of our findings we reinterpret the origin of some seismically reflective layers in the Grône–Zweisimmen line in southwestern Switzerland (PNR20 Swiss National Research Program). We hypothesize that reflections originate in part from the lateral variation in textural and microstructural arrangement of calcite mylonites in shear zones.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The Penninic nappes in the Swiss Alps formed during continental collision between the Adriatic and European plates in Cenozoic times. Although intensely studied, the finite geometry of the basement-bearing Penninic nappes in western Switzerland has remained a matter of debate for decades (e.g., “Siviez-Mischabel dilemma”) and the paleogeographic origin of various nappes has been disputed. Here, we present new structural data for the central part of the Penninic Bernard nappe complex, which contains pre-Permian basement and Permo-Mesozoic metasedimentary units. Our lithological and structural observations indicate that the discrepancy between the different structural models proposed for the Bernard nappe complex can be explained by a lateral discontinuity. In the west, the presence of a Permian graben caused complex isoclinal folding, whereas in the east, the absence of such a graben resulted mainly in imbricate thrusting. The overall geometry of the Bernard nappe complex is the result of three main deformation phases: (1) detachment of Mesozoic cover sediments along Triassic evaporites (Evolène phase) during the early stages of collision, (2) Eocene top-to-the-N(NW) nappe stacking (Anniviers phase), and (3) subsequent backfolding and backshearing (Mischabel phase). The southward localized backshearing is key to understand the structural position and paleogeographic origin of units, such as the Frilihorn and Cimes Blanches “nappes” and the Antrona ophiolites. Based on these observations, we present a new tectonic model for the entire Penninic region of western Switzerland and discuss this model in terms of continental collision zone processes.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We analyze the data on hydrogen energetic neutral atoms (ENAs) emissions from the dayside of Mars, recorded by a Neutral Particle Detector of the Analyzer of Space Plasmas and Energetic Atoms aboard Mars Express from 14 March to 9 July 2004. We first identify and analyze events of the ENA flux enhancement coinciding with the presence of the crustal magnetic anomalies on the dayside of Mars. We then backtrace the ENA emissions to the lower altitudes (source region) and build up an average map of the flux intensities in the geographic coordinates with all the available data. The map shows a peak-to-valley ENA flux enhancement of 40%–90% close to the crustal magnetic anomaly regions. These results suggest the influence of the magnetic anomalies on the ENA emission from the dayside of Mars. The enhancement may result from the deviation of the highly directional plasma flow above anomalies toward the detectors such that more charge exchange ENAs would be recorded. Alternatively, higher exospheric densities above the anomalies would also result in an increase of the charge exchange ENA flux.