47 resultados para Crop sequencing
em BORIS: Bern Open Repository and Information System - Berna - Suiça
Resumo:
Background: Tef (Eragrostis tef), an indigenous cereal critical to food security in the Horn of Africa, is rich in minerals and protein, resistant to many biotic and abiotic stresses and safe for diabetics as well as sufferers of immune reactions to wheat gluten. We present the genome of tef, the first species in the grass subfamily Chloridoideae and the first allotetraploid assembled de novo. We sequenced the tef genome for marker-assisted breeding, to shed light on the molecular mechanisms conferring tef's desirable nutritional and agronomic properties, and to make its genome publicly available as a community resource. Results: The draft genome contains 672 Mbp representing 87% of the genome size estimated from flow cytometry. We also sequenced two transcriptomes, one from a normalized RNA library and another from unnormalized RNASeq data. The normalized RNA library revealed around 38000 transcripts that were then annotated by the SwissProt group. The CoGe comparative genomics platform was used to compare the tef genome to other genomes, notably sorghum. Scaffolds comprising approximately half of the genome size were ordered by syntenic alignment to sorghum producing tef pseudo-chromosomes, which were sorted into A and B genomes as well as compared to the genetic map of tef. The draft genome was used to identify novel SSR markers, investigate target genes for abiotic stress resistance studies, and understand the evolution of the prolamin family of proteins that are responsible for the immune response to gluten. Conclusions: It is highly plausible that breeding targets previously identified in other cereal crops will also be valuable breeding targets in tef. The draft genome and transcriptome will be of great use for identifying these targets for genetic improvement of this orphan crop that is vital for feeding 50 million people in the Horn of Africa.
Resumo:
Highland cattle with congenital crop ears have notches of variable size on the tips of both ears. In some cases, cartilage deformation can be seen and occasionally the external ears are shortened. We collected 40 cases and 80 controls across Switzerland. Pedigree data analysis confirmed a monogenic autosomal dominant mode of inheritance with variable expressivity. All affected animals could be traced back to a single common ancestor. A genome-wide association study was performed and the causative mutation was mapped to a 4 Mb interval on bovine chromosome 6. The H6 family homeobox 1 (HMX1) gene was selected as a positional and functional candidate gene. By whole genome re-sequencing of an affected Highland cattle, we detected 6 non-synonymous coding sequence variants and two variants in an ultra-conserved element at the HMX1 locus with respect to the reference genome. Of these 8 variants, only a non-coding 76 bp genomic duplication (g.106720058_106720133dup) located in the conserved region was perfectly associated with crop ears. The identified copy number variation probably results in HMX1 misregulation and possible gain-of-function. Our findings confirm the role of HMX1 during the development of the external ear. As it is sometimes difficult to phenotypically diagnose Highland cattle with slight ear notches, genetic testing can now be used to improve selection against this undesired trait.
Resumo:
The cytidine deaminase AID hypermutates immunoglobulin genes but can also target oncogenes, leading to tumorigenesis. The extent of AID's promiscuity and its predilection for immunoglobulin genes are unknown. We report here that AID interacted broadly with promoter-proximal sequences associated with stalled polymerases and chromatin-activating marks. In contrast, genomic occupancy of replication protein A (RPA), an AID cofactor, was restricted to immunoglobulin genes. The recruitment of RPA to the immunoglobulin loci was facilitated by phosphorylation of AID at Ser38 and Thr140. We propose that stalled polymerases recruit AID, thereby resulting in low frequencies of hypermutation across the B cell genome. Efficient hypermutation and switch recombination required AID phosphorylation and correlated with recruitment of RPA. Our findings provide a rationale for the oncogenic role of AID in B cell malignancy.
Resumo:
Mycobacterium abscessus, Mycobacterium bolletii, and Mycobacterium massiliense (Mycobacterium abscessus sensu lato) are closely related species that currently are identified by the sequencing of the rpoB gene. However, recent studies show that rpoB sequencing alone is insufficient to discriminate between these species, and some authors have questioned their current taxonomic classification. We studied here a large collection of M. abscessus (sensu lato) strains by partial rpoB sequencing (752 bp) and multilocus sequence analysis (MLSA). The final MLSA scheme developed was based on the partial sequences of eight housekeeping genes: argH, cya, glpK, gnd, murC, pgm, pta, and purH. The strains studied included the three type strains (M. abscessus CIP 104536(T), M. massiliense CIP 108297(T), and M. bolletii CIP 108541(T)) and 120 isolates recovered between 1997 and 2007 in France, Germany, Switzerland, and Brazil. The rpoB phylogenetic tree confirmed the existence of three main clusters, each comprising the type strain of one species. However, divergence values between the M. massiliense and M. bolletii clusters all were below 3% and between the M. abscessus and M. massiliense clusters were from 2.66 to 3.59%. The tree produced using the concatenated MLSA gene sequences (4,071 bp) also showed three main clusters, each comprising the type strain of one species. The M. abscessus cluster had a bootstrap value of 100% and was mostly compact. Bootstrap values for the M. massiliense and M. bolletii branches were much lower (71 and 61%, respectively), with the M. massiliense cluster having a fuzzy aspect. Mean (range) divergence values were 2.17% (1.13 to 2.58%) between the M. abscessus and M. massiliense clusters, 2.37% (1.5 to 2.85%) between the M. abscessus and M. bolletii clusters, and 2.28% (0.86 to 2.68%) between the M. massiliense and M. bolletii clusters. Adding the rpoB sequence to the MLSA-concatenated sequence (total sequence, 4,823 bp) had little effect on the clustering of strains. We found 10/120 (8.3%) isolates for which the concatenated MLSA gene sequence and rpoB sequence were discordant (e.g., M. massiliense MLSA sequence and M. abscessus rpoB sequence), suggesting the intergroup lateral transfers of rpoB. In conclusion, our study strongly supports the recent proposal that M. abscessus, M. massiliense, and M. bolletii should constitute a single species. Our findings also indicate that there has been a horizontal transfer of rpoB sequences between these subgroups, precluding the use of rpoB sequencing alone for the accurate identification of the two proposed M. abscessus subspecies.
Resumo:
The time passed since the infection of a human immunodeficiency virus (HIV)-infected individual (the age of infection) is an important but often only poorly known quantity. We assessed whether the fraction of ambiguous nucleotides obtained from bulk sequencing as done for genotypic resistance testing can serve as a proxy of this parameter.
Resumo:
Epilepsies have a highly heterogeneous background with a strong genetic contribution. The variety of unspecific and overlapping syndromic and nonsyndromic phenotypes often hampers a clear clinical diagnosis and prevents straightforward genetic testing. Knowing the genetic basis of a patient's epilepsy can be valuable not only for diagnosis but also for guiding treatment and estimating recurrence risks.
Resumo:
Arachnomelia is a monogenic recessive defect of skeletal development in cattle. The causative mutation was previously mapped to a approximately 7 Mb interval on chromosome 5. Here we show that array-based sequence capture and massively parallel sequencing technology, combined with the typical family structure in livestock populations, facilitates the identification of the causative mutation. We re-sequenced the entire critical interval in a healthy partially inbred cow carrying one copy of the critical chromosome segment in its ancestral state and one copy of the same segment with the arachnomelia mutation, and we detected a single heterozygous position. The genetic makeup of several partially inbred cattle provides extremely strong support for the causality of this mutation. The mutation represents a single base insertion leading to a premature stop codon in the coding sequence of the SUOX gene and is perfectly associated with the arachnomelia phenotype. Our findings suggest an important role for sulfite oxidase in bone development.
Resumo:
With the advent of high through-put sequencing (HTS), the emerging science of metagenomics is transforming our understanding of the relationships of microbial communities with their environments. While metagenomics aims to catalogue the genes present in a sample through assessing which genes are actively expressed, metatranscriptomics can provide a mechanistic understanding of community inter-relationships. To achieve these goals, several challenges need to be addressed from sample preparation to sequence processing, statistical analysis and functional annotation. Here we use an inbred non-obese diabetic (NOD) mouse model in which germ-free animals were colonized with a defined mixture of eight commensal bacteria, to explore methods of RNA extraction and to develop a pipeline for the generation and analysis of metatranscriptomic data. Applying the Illumina HTS platform, we sequenced 12 NOD cecal samples prepared using multiple RNA-extraction protocols. The absence of a complete set of reference genomes necessitated a peptide-based search strategy. Up to 16% of sequence reads could be matched to a known bacterial gene. Phylogenetic analysis of the mapped ORFs revealed a distribution consistent with ribosomal RNA, the majority from Bacteroides or Clostridium species. To place these HTS data within a systems context, we mapped the relative abundance of corresponding Escherichia coli homologs onto metabolic and protein-protein interaction networks. These maps identified bacterial processes with components that were well-represented in the datasets. In summary this study highlights the potential of exploiting the economy of HTS platforms for metatranscriptomics.
Resumo:
Here we determined the analytical sensitivities of broad-range real-time PCR-based assays employing one of three different genomic DNA extraction protocols in combination with one of three different primer pairs targeting the 16S rRNA gene to detect a panel of 22 bacterial species. DNA extraction protocol III, using lysozyme, lysostaphin, and proteinase K, followed by PCR with the primer pair Bak11W/Bak2, giving amplicons of 796 bp in length, showed the best overall sensitivity, detecting DNA of 82% of the strains investigated at concentrations of < or =10(2) CFU in water per reaction. DNA extraction protocols I and II, using less enzyme treatment, combined with other primer pairs giving shorter amplicons of 466 bp and 342 or 346 bp, respectively, were slightly more sensitive for the detection of gram-negative but less sensitive for the detection of gram-positive bacteria. The obstacle of detecting background DNA in blood samples spiked with bacteria was circumvented by introducing a broad-range hybridization probe, and this preserved the minimal detection limits observed in samples devoid of blood. Finally, sequencing of the amplicons generated using the primer pair Bak11W/Bak2 allowed species identification of the detected bacterial DNA. Thus, broad-spectrum PCR targeting the 16S rRNA gene in the quantitative real-time format can achieve an analytical sensitivity of 1 to 10 CFU per reaction in water, avoid detection of background DNA with the introduction of a broad-range probe, and generate amplicons that allow species identification of the detected bacterial DNA by sequencing. These prerequisites are important for its application to blood-containing patient samples.