7 resultados para Critical Pore Diameter
em BORIS: Bern Open Repository and Information System - Berna - Suiça
Resumo:
Purpose : To angiographically evaluate infrapopliteal arterial lesion morphology in a consecutive series of patients presenting with critical limb ischemia (CLI) and undergoing infrapopliteal angioplasty. Methods : A prospective analysis was undertaken of a consecutive series of CLI patients undergoing endovascular therapy in a tertiary referral center in the year 2011. Morphological assessment of baseline angiograms obtained prior to revascularization included lesion length, assessment of calcification using a semi-quantitative scoring system, and reference vessel diameter (RVD) measurement. Delta RVDs were assessed subtracting distal RVDs from proximal RVDs. A total of 197 infrapopliteal lesions in 105 CLI patients (n=106 limbs) were assessed. Of these, 136 lesions were treated by endovascular means. Results : The average length of treated lesions was 87.1±43.8 mm in stenoses and 124.0±78.3 mm in chronic occlusions (p<0.001). Mean RVD proximal to the lesions was 1.88 mm whereas it was 1.66 mm distal to the lesions (p≤0.03). Mean arterial calcification was 1.15. Conclusion : This prospective angiographic series underlines the complex nature and extensive longitudinal involvement of infrapopliteal lesions in CLI patients. These findings should be taken into consideration for anti-restenosis concepts in this challenging subgroup of peripheral artery disease patients.
Resumo:
The initital purpose for developing artificial oxygen carriers was to replace blood transfusions in order to avoid their adverse effects such as immunologic reactions, transmission of infectious diseases, limited availability and restricted storage conditions. With the advent of new generations of artifical oxygen carriers, a shift of paradigm evolved that considers the artificial oxygen carriers as oxygen therapeutics re-distributing oxygen delivery in the favor of tissues in need. This function may find a particular application in tissues rendered hypoxic due to arterial occlusive diseases. This review, based on a large series of intravital microscopy studies in a hamster skin flap model, outlines the optimal design of hemoglobin vesicles?HbVs?given for the above intention. In summary, the HbV should be of a large diameter, and oxygen affinity, colloid osmotic pressure and viscosity of the HbV solution should be high.
Resumo:
The repair of bone defects with biomaterials depends on a sufficient vascularization of the implantation site. We analyzed the effect of pore size on the vascularization and osseointegration of biphasic calcium phosphate particles, which were implanted into critical-sized cranial defects in Balb/c mice. Dense particles and particles with pore sizes in the ranges 40-70, 70-140, 140-210, and 210-280 mum were tested (n = 6 animals per group). Angiogenesis, vascularization, and leukocyte-endothelium interactions were monitored for 28 days by intravital microscopy. The formation of new bone and the bone-interface contact (BIC) were determined histomorphometrically. Twenty-eight days after implantation, the functional capillary density was significantly higher with ceramic particles whose pore sizes exceeded 140 mum [140-210 mum: 6.6 (+/-0.8) mm/mm(2); 210-280 mum: 7.3 (+/-0.6) mm/mm(2)] than with those whose pore sizes were lesser than 140 mum [40-70 mum: 5.3 (+/-0.4) mm/mm(2); 70-140 mum: 5.6 (+/-0.3) mm/mm(2)] or with dense particles [5.7 (+/-0.8) mm/mm(2)]. The volume of newly-formed bone deposited within the implants increased as the pore size increased [40-70 mum: 0.07 (+/-0.02) mm(3); 70-140 mum: 0.10 (+/-0.06) mm(3); 140-210 mum: 0.13 (+/-0.05) mm(3); 210-280 mum: 0.15 (+/-0.06) mm(3)]. Similar results were observed for the BIC. The data demonstrates pore size to be a critical parameter governing the dynamic processes of vascularization and osseointegration of bone substitutes. (c) 2007 Wiley Periodicals, Inc. J Biomed Mater Res, 2007.
Resumo:
PURPOSE To assess the extent of early recoil in patients with critical limb ischemia (CLI) undergoing conventional tibial balloon angioplasty. METHODS Our hypothesis was that early recoil, defined as lumen compromise >10%, is frequent and accounts for considerable luminal narrowing after tibial angioplasty, promoting restenosis. To test this theory, 30 consecutive CLI patients (18 men; mean age 76.2±12.1 years) were angiographically evaluated immediately after tibial balloon angioplasty and 15 minutes later. Half the patients were diabetics. Target lesions included anterior and posterior tibial arteries and the peroneal artery with / without the tibioperoneal trunk. Mean tibial lesion length was 83.8 mm. Early elastic recoil was determined on the basis of minimal lumen diameter (MLD) measurements at baseline (MLDbaseline), immediately after tibial balloon angioplasty (MLDpostdilation), and 15 minutes thereafter (MLD15min). RESULTS Elastic recoil was observed in 29 (97%) patients with a mean luminal compromise of 29% according to MLD measurements (MLDbaseline 0.23 mm, MLD postdilation 2.0 mm, and MLD15min 1.47 mm). CONCLUSION Early recoil is frequently observed in CLI patients undergoing tibial angioplasty and may significantly contribute to restenosis. These findings support the role of dedicated mechanical scaffolding approaches for the prevention of restenosis in tibial arteries.
Resumo:
The determination of stable isotope contents of pore-water from consolidated argillaceous rocks remains a critical issue. In order to understand the processes involved in techniques developed for acquiring stable isotope compositions of pore-water, a comparative study between different methods was based on core samples of the Tournemire argillite. It concerns two water extraction techniques based on vacuum distillation and two pore-water equilibration techniques (radial diffusion in liquid phase and diffusive exchange in vapor phase). The water-content values obtained from vacuum distillation at 50 °C are always the lowest, on average 8% lower than the values obtained by heating at 105 °C and 17% lower than the values obtained by heating at 150 °C. The amounts of pore-water estimated from vacuum distillation at 105 °C and 150 °C and from radial diffusion method are in good agreement with those determined by heating. On the contrary, the vapor exchange method provides the highest values of water contents. Concerning stable isotope data, a good agreement was found between those obtained by equilibration techniques and those of fracture water, especially for 2H. Vacuum distillation at high temperature (particularly at 150 °C) also provided results consistent with data of fracture fluids. On the other hand, distillation at 50 °C provides a systematic depletion in heavy isotopes (about –20‰ for 2H and –2.7‰ for 18O) that can be modelled by an incomplete Rayleigh-type distillation process.
Resumo:
Pneumolysin (PLY), a key virulence factor of Streptococcus pneumoniae, permeabilizes eukaryotic cells by forming large trans-membrane pores. PLY imposes a puzzling multitude of diverse, often mutually excluding actions on eukaryotic cells. Whereas cytotoxicity of PLY can be directly attributed to the pore-mediated effects, mechanisms that are responsible for the PLY-induced activation of host cells are poorly understood. We show that PLY pores can be repaired and thereby PLY-induced cell death can be prevented. Pore-induced Ca2+ entry from the extracellular milieu is of paramount importance for the initiation of plasmalemmal repair. Nevertheless, active Ca2+ sequestration that prevents excessive Ca2+ elevation during the execution phase of plasmalemmal repair is of no less importance. The efficacy of plasmalemmal repair does not only define the fate of targeted cells but also intensity, duration and repetitiveness of PLY-induced Ca2+ signals in cells that were able to survive after PLY attack. Intracellular Ca2+ dynamics evoked by the combined action of pore formation and their elimination mimic the pattern of receptor-mediated Ca2+ signaling, which is responsible for the activation of host immune responses. Therefore, we postulate that plasmalemmal repair of PLY pores might provoke cellular responses that are similar to those currently ascribed to the receptor-mediated PLY effects. Our data provide new insights into the understanding of the complexity of cellular non-immune defense responses to a major pneumococcal toxin that plays a critical role in the establishment and the progression of life-threatening diseases. Therapies boosting plasmalemmal repair of host cells and their metabolic fitness might prove beneficial for the treatment of pneumococcal infections.
Resumo:
BACKGROUND AIMS Stem cells participate in vascular regeneration following critical ischemia. However, their angiogenic and remodeling properties, as well as their role in ischemia-related endothelial leukocyte activation, need to be further elucidated. Herein, we investigated the effect of bone marrow-derived mesenchymal stromal cells (BM-MSCs) in a critically ischemic murine skin flap model. METHODS Groups received either 1 × 10(5), 5 × 10(5), or 1 × 10(6) BM-MSCs or cell-free conditioned medium (CM). Controls received sodium chloride. Intravital fluorescence microscopy was performed for morphological and quantitative assessment of micro-hemodynamic parameters over 12 days. RESULTS Tortuosity and diameter of conduit-arterioles were pronounced in the MSC groups (P < 0.01), whereas vasodilation was shifted to the end arteriolar level in the CM group (P < 0.01). These effects were accompanied by angiopoietin-2 expression. Functional capillary density and red blood cell velocity were enhanced in all treatment groups (P < 0.01). Although a significant reduction of rolling and sticking leukocytes was observed in the MSC groups with a reduction of diameter in postcapillary venules (P < 0.01), animals receiving CM exhibited a leukocyte-endothelium interaction similar to controls. This correlated with leukocyte common antigen expression in tissue sections (P < 0.01) and p38 mitogen-activated protein kinase expression from tissue samples. Cytokine analysis from BM-MSC culture medium revealed a 50% reduction of pro-inflammatory cytokines (interleukin [IL]-1β, IL-6, IL-12, tumor necrosis factor-α, interferon-γ) and chemokines (keratinocyte chemoattractant, granulocyte colony-stimulating factor) under hypoxic conditions. DISCUSSION We demonstrated positive effects of BM-MSCs on vascular regeneration and modulation of endothelial leukocyte adhesion in critical ischemic skin. The improvements after MSC application were dose-dependent and superior to the use of CM alone.