24 resultados para Coulomb oscillation

em BORIS: Bern Open Repository and Information System - Berna - Suiça


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Energy-harvesting devices attract wide interest as power supplies of today's medical implants. Their long lifetime will spare patients from repeated surgical interventions. They also offer the opportunity to further miniaturize existing implants such as pacemakers, defibrillators or recorders of bio signals. A mass imbalance oscillation generator, which consists of a clockwork from a commercially available automatic wrist watch, was used as energy harvesting device to convert the kinetic energy from the cardiac wall motion to electrical energy. An MRI-based motion analysis of the left ventricle revealed basal regions to be energetically most favorable for the rotating unbalance of our harvester. A mathematical model was developed as a tool for optimizing the device's configuration. The model was validated by an in vitro experiment where an arm robot accelerated the harvesting device by reproducing the cardiac motion. Furthermore, in an in vivo experiment, the device was affixed onto a sheep heart for 1 h. The generated power in both experiments-in vitro (30 μW) and in vivo (16.7 μW)-is sufficient to power modern pacemakers.

Relevância:

20.00% 20.00%

Publicador:

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Due to its non-invasive character, the forced oscillation technique has gained importance in clinical research in infants and young children. Standardisation has enabled systematic and comparable measurements to be made in different laboratories throughout the world. The theoretical conditions are now fulfilled for use of these techniques in the clinical environment. This review discusses the principles, usefulness and pitfalls of various forced oscillation techniques in a research and clinical environment and the present and future clinical applications in children. It will focus particularly on the role of infant and preschool lung function as forced oscillation only requires minimal cooperation.