14 resultados para Coset Enumeration
em BORIS: Bern Open Repository and Information System - Berna - Suiça
Resumo:
A variety of conformationally constrained aspartate and glutamate analogues inhibit the glutamate transporter 1 (GLT-1, also known as EAAT2). To expand the search for such analogues, a virtual library of aliphatic aspartate and glutamate analogues was generated starting from the chemical universe database GDB-11, which contains 26.4 million possible molecules up to 11 atoms of C, N, O, F, resulting in 101026 aspartate analogues and 151285 glutamate analogues. Virtual screening was realized by high-throughput docking to the glutamate binding site of the glutamate transporter homologue from Pyrococcus horikoshii (PDB code: 1XFH ) using Autodock. Norbornane-type aspartate analogues were selected from the top-scoring virtual hits and synthesized. Testing and optimization led to the identification of (1R*,2R*,3S*,4R*,6R*)-2-amino-6-phenethyl-bicyclo[2.2.1]heptane-2,3-dicarboxylic acid as a new inhibitor of GLT-1 with IC(50) = 1.4 ?M against GLT-1 and no inhibition of the related transporter EAAC1. The systematic diversification of known ligands by enumeration with help of GDB followed by virtual screening, synthesis, and testing as exemplified here provides a general strategy for drug discovery.
Resumo:
We tested the use of multiplex real-time PCR for detection and quantification of Campylobacter jejuni and Campylobacter coli on broiler carcass neck skin samples collected during 2008 from slaughterhouses in Switzerland. Results from an established TaqMan assay based on two different targets (hipO and ceuE for C. jejuni and C. coli, respectively) were corroborated with data from a newly developed assay based on a single-nucleotide polymorphism in the fusA gene, which allows differentiation between C. jejuni and C. coli. Both multiplex real-time PCRs were applied simultaneously for direct detection, differentiation, and quantification of Campylobacter from 351 neck skin samples and compared with culture methods. There was good correlation in detection and enumeration between real-time PCR results and quantitative culture, with real-time PCR being more sensitive. Overall, 251 (71.5%) of the samples were PCR positive for Campylobacter, with 211 (60.1%) in the hipO-ceuE assays, 244 (69.5%) in the fusA assay, and 204 (58.1%) of them being positive in both PCR assays. Thus, the fusA assay was similarly sensitive to the enrichment culture (72.4% positive); however, it is faster and allows for quantification. In addition, real-time PCR allowed for species differentiation; roughly 60% of positive samples contained C. jejuni, less than 10% C. coli, and more than 30% contained both species. Real-time PCR proved to be a suitable method for direct detection, quantification, and differentiation of Campylobacter from carcasses, and could permit time-efficient surveillance of these zoonotic agents.
Resumo:
Endometriosis may progress to invasive endometrioid adenocarcinoma, particularly in the ovary. Up to now, little is known of the molecular mechanisms possibly involved in the malignant transformation of endometriosis. Therefore, in this study, extragonadal endometriosis (n = 10), ovarian endometriosis without malignancy (n = 10), ovarian endometriosis with direct transition into endometrioid adenocarcinoma (n = 8), and normal endometrium (n = 12) were investigated for numerical chromosomal aberrations by fluorescence in situ hybridization using centromere enumeration probes. The proportions of cells with aneusomies were semiquantitatively assessed. Trisomies 1 and 7, and monosomies 9 and 17 were found in endometriosis, ovarian endometrioid adenocarcinoma, and normal endometrium. The proportions of aneusomic cells were significantly higher in ovarian endometrioid carcinoma compared with ovarian endometriosis (P < 0.001), and in ovarian endometriosis compared with extragonadal endometriosis and normal endometrium (P < 0.001). The data provide new evidence of a common lineage of endometriosis and ovarian endometrioid carcinoma. The higher frequency of chromosomal aberrations in endometrioid carcinoma than in endometriosis may reflect an expansion of aberrant cell clones already present in endometriosis during the progression to cancer. The higher frequency of chromosomal aberrations in ovarian endometriosis than in extragonadal endometriosis suggests a role of the ovarian stromal milieu in the induction of genetic changes, which may eventually lead to invasive cancer.
Resumo:
The concept of elementary vector is generalised to the case where the steady-state space of the metabolic network is not a flux cone but is a general polyhedron due to further inhomogeneous constraints on the flows through some of the reactions. On one hand, this allows to selectively enumerate elementary modes which satisfy certain optimality criteria and this can yield a large computational gain compared with full enumeration. On the other hand, in contrast to the single optimum found by executing a linear program, this enables a comprehensive description of the set of alternate optima often encountered in flux balance analysis. The concepts are illustrated on a metabolic network model of human cardiac mitochondria.
Resumo:
I introduce the new mgof command to compute distributional tests for discrete (categorical, multinomial) variables. The command supports largesample tests for complex survey designs and exact tests for small samples as well as classic large-sample x2-approximation tests based on Pearson’s X2, the likelihood ratio, or any other statistic from the power-divergence family (Cressie and Read, 1984, Journal of the Royal Statistical Society, Series B (Methodological) 46: 440–464). The complex survey correction is based on the approach by Rao and Scott (1981, Journal of the American Statistical Association 76: 221–230) and parallels the survey design correction used for independence tests in svy: tabulate. mgof computes the exact tests by using Monte Carlo methods or exhaustive enumeration. mgof also provides an exact one-sample Kolmogorov–Smirnov test for discrete data.
Resumo:
We construct two-parameter families of integrable λ -deformations of two-dimensional field theories. These interpolate between a CFT (a WZW/gauged WZW model) and the non-Abelian T-dual of a principal chiral model on a group/symmetric coset space. In examples based on the SU(2) WZW model and the SU(2)/U(1) exact coset CFT, we show that these deformations are related to bi-Yang–Baxter generalisations of η-deformations via Poisson–Lie T-duality and analytic continuation. We illustrate the quantum behaviour of our models under RG flow. As a byproduct we demonstrate that the bi-Yang–Baxter σ-model for a general group is one-loop renormalisable.
Resumo:
We study Yang-Baxter deformations of 4D Minkowski spacetime. The Yang-Baxter sigma model description was originally developed for principal chiral models based on a modified classical Yang-Baxter equation. It has been extended to coset curved spaces and models based on the usual classical Yang-Baxter equation. On the other hand, for flat space, there is the obvious problem that the standard bilinear form degenerates if we employ the familiar coset Poincaré group/Lorentz group. Instead we consider a slice of AdS5 by embedding the 4D Poincaré group into the 4D conformal group SO(2, 4) . With this procedure we obtain metrics and B-fields as Yang-Baxter deformations which correspond to well-known configurations such as T-duals of Melvin backgrounds, Hashimoto-Sethi and Spradlin-Takayanagi-Volovich backgrounds, the T-dual of Grant space, pp-waves, and T-duals of dS4 and AdS4. Finally we consider a deformation with a classical r-matrix of Drinfeld-Jimbo type and explicitly derive the associated metric and B-field which we conjecture to correspond to a new integrable system.
Resumo:
We calculate the all-loop anomalous dimensions of current operators in λ-deformed σ-models. For the isotropic integrable deformation and for a semi-simple group G we compute the anomalous dimensions using two different methods. In the first we use the all-loop effective action and in the second we employ perturbation theory along with the Callan–Symanzik equation and in conjunction with a duality-type symmetry shared by these models. Furthermore, using CFT techniques we compute the all-loop anomalous dimension of bilinear currents for the isotropic deformation case and a general G . Finally we work out the anomalous dimension matrix for the cases of anisotropic SU(2) and the two couplings, corresponding to the symmetric coset G/H and a subgroup H, splitting of a group G.
Resumo:
One of the simplest questions that can be asked about molecular diversity is how many organic molecules are possible in total? To answer this question, my research group has computationally enumerated all possible organic molecules up to a certain size to gain an unbiased insight into the entire chemical space. Our latest database, GDB-17, contains 166.4 billion molecules of up to 17 atoms of C, N, O, S, and halogens, by far the largest small molecule database reported to date. Molecules allowed by valency rules but unstable or nonsynthesizable due to strained topologies or reactive functional groups were not considered, which reduced the enumeration by at least 10 orders of magnitude and was essential to arrive at a manageable database size. Despite these restrictions, GDB-17 is highly relevant with respect to known molecules. Beyond enumeration, understanding and exploiting GDBs (generated databases) led us to develop methods for virtual screening and visualization of very large databases in the form of a “periodic system of molecules” comprising six different fingerprint spaces, with web-browsers for nearest neighbor searches, and the MQN- and SMIfp-Mapplet application for exploring color-coded principal component maps of GDB and other large databases. Proof-of-concept applications of GDB for drug discovery were realized by combining virtual screening with chemical synthesis and activity testing for neurotransmitter receptor and transporter ligands. One surprising lesson from using GDB for drug analog searches is the incredible depth of chemical space, that is, the fact that millions of very close analogs of any molecule can be readily identified by nearest-neighbor searches in the MQN-space of the various GDBs. The chemical space project has opened an unprecedented door on chemical diversity. Ongoing and yet unmet challenges concern enumerating molecules beyond 17 atoms and synthesizing GDB molecules with innovative scaffolds and pharmacophores.
Resumo:
mgof computes goodness-of-fit tests for the distribution of a discrete (categorical, multinomial) variable. The default is to perform classical large sample chi-squared approximation tests based on Pearson's X2 statistic and the log likelihood ratio (G2) statistic or a statistic from the Cressie-Read family. Alternatively, mgof computes exact tests using Monte Carlo methods or exhaustive enumeration. A Kolmogorov-Smirnov test for discrete data is also provided. The moremata package, also available from SSC, is required.
Resumo:
A new Stata command called -mgof- is introduced. The command is used to compute distributional tests for discrete (categorical, multinomial) variables. Apart from classic large sample $\chi^2$-approximation tests based on Pearson's $X^2$, the likelihood ratio, or any other statistic from the power-divergence family (Cressie and Read 1984), large sample tests for complex survey designs and exact tests for small samples are supported. The complex survey correction is based on the approach by Rao and Scott (1981) and parallels the survey design correction used for independence tests in -svy:tabulate-. The exact tests are computed using Monte Carlo methods or exhaustive enumeration. An exact Kolmogorov-Smirnov test for discrete data is also provided.