132 resultados para Cortical plasticity

em BORIS: Bern Open Repository and Information System - Berna - Suiça


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Investigations of gray matter changes in relation with auditory verbal hallucinations (AVH) have reported conflicting results. Assuming that alterations in gray matter might be related to certain symptoms in schizophrenia this study aimed to investigate changes in cortical thickness specific to AVH. It was hypothesized that schizophrenia patients suffering from persistent AVH would show significant differences in cortical thickness in regions involved in language-production and perception when compared to schizophrenia patients which had never experienced any hallucinations.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Synaptic strength depresses for low and potentiates for high activation of the postsynaptic neuron. This feature is a key property of the Bienenstock–Cooper–Munro (BCM) synaptic learning rule, which has been shown to maximize the selectivity of the postsynaptic neuron, and thereby offers a possible explanation for experience-dependent cortical plasticity such as orientation selectivity. However, the BCM framework is rate-based and a significant amount of recent work has shown that synaptic plasticity also depends on the precise timing of presynaptic and postsynaptic spikes. Here we consider a triplet model of spike-timing–dependent plasticity (STDP) that depends on the interactions of three precisely timed spikes. Triplet STDP has been shown to describe plasticity experiments that the classical STDP rule, based on pairs of spikes, has failed to capture. In the case of rate-based patterns, we show a tight correspondence between the triplet STDP rule and the BCM rule. We analytically demonstrate the selectivity property of the triplet STDP rule for orthogonal inputs and perform numerical simulations for nonorthogonal inputs. Moreover, in contrast to BCM, we show that triplet STDP can also induce selectivity for input patterns consisting of higher-order spatiotemporal correlations, which exist in natural stimuli and have been measured in the brain. We show that this sensitivity to higher-order correlations can be used to develop direction and speed selectivity.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

BACKGROUND AND PURPOSE: There is a need to develop strategies to enhance the beneficial effects of motor training, including use-dependent plasticity (UDP), in neurorehabilitation. Peripheral nerve stimulation (PNS) modulates motor cortical excitability in healthy humans and could influence training effects in stroke patients. METHODS: We compared the ability of PNS applied to the (1) arm, (2) leg, and (3) idle time to influence training effects in the paretic hand in 7 chronic stroke patients. The end point measure was the magnitude of UDP. RESULTS: UDP was more prominent with arm stimulation (increased by 22.8%) than with idle time (by 2.9%) or leg stimulation (by 6.4%). CONCLUSIONS: PNS applied to the paretic limb paired with motor training enhances training effects on cortical plasticity in stroke patients.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The unsupervised categorization of sensory stimuli is typically attributed to feedforward processing in a hierarchy of cortical areas. This purely sensory-driven view of cortical processing, however, ignores any internal modulation, e.g., by top-down attentional signals or neuromodulator release. To isolate the role of internal signaling on category formation, we consider an unbroken continuum of stimuli without intrinsic category boundaries. We show that a competitive network, shaped by recurrent inhibition and endowed with Hebbian and homeostatic synaptic plasticity, can enforce stimulus categorization. The degree of competition is internally controlled by the neuronal gain and the strength of inhibition. Strong competition leads to the formation of many attracting network states, each being evoked by a distinct subset of stimuli and representing a category. Weak competition allows more neurons to be co-active, resulting in fewer but larger categories. We conclude that the granularity of cortical category formation, i.e., the number and size of emerging categories, is not simply determined by the richness of the stimulus environment, but rather by some global internal signal modulating the network dynamics. The model also explains the salient non-additivity of visual object representation observed in the monkey inferotemporal (IT) cortex. Furthermore, it offers an explanation of a previously observed, demand-dependent modulation of IT activity on a stimulus categorization task and of categorization-related cognitive deficits in schizophrenic patients.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Voltage-dependent calcium channels (VDCCs) serve a wide range of physiological functions and their activity is modulated by different neurotransmitter systems. GABAergic inhibition of VDCCs in neurons has an important impact in controlling transmitter release, neuronal plasticity, gene expression and neuronal excitability. We investigated the molecular signalling mechanisms by which GABAB receptors inhibit calcium-mediated electrogenesis (Ca2+ spikes) in the distal apical dendrite of cortical layer 5 pyramidal neurons. Ca2+ spikes are the basis of coincidence detection and signal amplification of distal tuft synaptic inputs characteristic for the computational function of cortical pyramidal neurons. By combining dendritic whole-cell recordings with two-photon fluorescence Ca2+ imaging we found that all subtypes of VDCCs were present in the Ca2+ spike initiation zone, but that they contribute differently to the initiation and sustaining of dendritic Ca2+ spikes. Particularly, Cav1 VDCCs are the most abundant VDCC present in this dendritic compartment and they generated the sustained plateau potential characteristic for the Ca2+ spike. Activation of GABAB receptors specifically inhibited Cav1 channels. This inhibition of L-type Ca2+ currents was transiently relieved by strong depolarization but did not depend on protein kinase activity. Therefore, our findings suggest a novel membrane-delimited interaction of the Gi/o-βγ-subunit with Cav1 channels identifying this mechanism as the general pathway of GABAB receptor-mediated inhibition of VDCCs. Furthermore, the characterization of the contribution of the different VDCCs to the generation of the Ca2+ spike provides new insights into the molecular mechanism of dendritic computation.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Preclinical studies using animal models have shown that grey matter plasticity in both perilesional and distant neural networks contributes to behavioural recovery of sensorimotor functions after ischaemic cortical stroke. Whether such morphological changes can be detected after human cortical stroke is not yet known, but this would be essential to better understand post-stroke brain architecture and its impact on recovery. Using serial behavioural and high-resolution magnetic resonance imaging (MRI) measurements, we tracked recovery of dexterous hand function in 28 patients with ischaemic stroke involving the primary sensorimotor cortices. We were able to classify three recovery subgroups (fast, slow, and poor) using response feature analysis of individual recovery curves. To detect areas with significant longitudinal grey matter volume (GMV) change, we performed tensor-based morphometry of MRI data acquired in the subacute phase, i.e. after the stage compromised by acute oedema and inflammation. We found significant GMV expansion in the perilesional premotor cortex, ipsilesional mediodorsal thalamus, and caudate nucleus, and GMV contraction in the contralesional cerebellum. According to an interaction model, patients with fast recovery had more perilesional than subcortical expansion, whereas the contrary was true for patients with impaired recovery. Also, there were significant voxel-wise correlations between motor performance and ipsilesional GMV contraction in the posterior parietal lobes and expansion in dorsolateral prefrontal cortex. In sum, perilesional GMV expansion is associated with successful recovery after cortical stroke, possibly reflecting the restructuring of local cortical networks. Distant changes within the prefrontal-striato-thalamic network are related to impaired recovery, probably indicating higher demands on cognitive control of motor behaviour.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

BACKGROUND Recovery after arterial ischaemic stroke is known to largely depend on the plastic properties of the brain. The present study examines changes in the network topography of the developing brain after stroke. Effects of brain damage are best assessed by examining entire networks rather than single sites of structural lesions. Relating these changes to post-stroke neuropsychological variables and motor abilities will improve understanding of functional plasticity after stroke. Inclusion of healthy controls will provide additional insight into children's normal brain development. Resting state functional magnetic resonance imaging is a valid approach to topographically investigate the reorganisation of functional networks after a brain lesion. Transcranial magnetic stimulation provides complementary output information. This study will investigate functional reorganisation after paediatric arterial ischaemic stroke by means of resting state functional magnetic resonance imaging and transcranial magnetic stimulation in a cross-sectional plus longitudinal study design. The general aim of this study is to better understand neuroplasticity of the developing brain after stroke in order to develop more efficacious therapy and to improve the post-stroke functional outcome. METHODS The cross-sectional part of the study will investigate the functional cerebral networks of 35 children with chronic arterial ischaemic stroke (time of the lesion >2 years). In the longitudinal part, 15 children with acute arterial ischaemic stroke (shortly after the acute phase of the stroke) will be included and investigations will be performed 3 times within the subsequent 9 months. We will also recruit 50 healthy controls, matched for age and sex. The neuroimaging and neurophysiological data will be correlated with neuropsychological and neurological variables. DISCUSSION This study is the first to combine resting state functional magnetic resonance imaging and transcranial magnetic stimulation in a paediatric population diagnosed with arterial ischaemic stroke. Thus, this study has the potential to uniquely contribute to the understanding of neuronal plasticity in the brains of healthy children and those with acute or chronic brain injury. It is expected that the results will lead to the development of optimal interventions after arterial ischaemic stroke.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Introduction The objective of this study was to assess three-dimensional bone geometry and density at the epiphysis and shaft of the third meta-carpal bone of rheumatoid arthritis (RA) patients in comparison to healthy controls with the novel method of peripheral quantitative computed tomography (pQCT). Methods PQCT scans were performed in 50 female RA patients and 100 healthy female controls at the distal epiphyses and shafts of the third metacarpal bone, the radius and the tibia. Reproducibility was determined by coefficient of varia-tion. Bone densitometric and geometric parameters were compared between the two groups and correlated to disease characteristics. Results Reproducibility of different pQCT parameters was between 0.7% and 2.5%. RA patients had 12% to 19% lower trabecular bone mineral density (BMD) (P ≤ 0.001) at the distal epiphyses of radius, tibia and metacarpal bone. At the shafts of these bones RA patients had 7% to 16% thinner cortices (P ≤ 0.03). Total cross-sectional area (CSA) at the metacarpal bone shaft of pa-tients was larger (between 5% and 7%, P < 0.02), and relative cortical area was reduced by 13%. Erosiveness by Ratingen score correlated negatively with tra-becular and total BMD at the epiphyses and shaft cortical thickness of all measured bones (P < 0.04). Conclusions Reduced trabecular BMD and thinner cortices at peripheral bones, and a greater bone shaft diameter at the metacarpal bone suggest RA spe-cific bone alterations. The proposed pQCT protocol is reliable and allows measuring juxta-articular trabecular BMD and shaft geometry at the metacarpal bone.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

While functional changes linked to second language learning have been subject to extensive investigation, the issue of learning-dependent structural plasticity in the fields of bilingualism and language comprehension has so far received less notice. In the present study we used voxel-based morphometry to monitor structural changes occurring within five months of second language learning. Native English-speaking exchange students learning German in Switzerland were examined once at the beginning of their stay and once about five months later, when their German language skills had significantly increased. We show that structural changes in the left inferior frontal gyrus are correlated with the increase in second language proficiency as measured by a paper-and-pencil language test. Contrary to the increase in proficiency and grey matter, the absolute values of grey matter density and second language proficiency did not correlate (neither on first nor on second measurement). This indicates that the individual amount of learning is reflected in brain structure changes, regardless of absolute proficiency.