134 resultados para Cortical lesion
em BORIS: Bern Open Repository and Information System - Berna - Suiça
Resumo:
Recovery from eye movement deficits after cortical lesions is amazingly rapid and almost complete, which is in sharp contrast to most other neurological deficits of cerebral lesions. The underlying mechanisms of this successful recovery remain uncertain. We had the rare opportunity to examine two patients with recovery from saccade deficits after a lesion restricted to the frontal eye field (FEF) by means of transcranial magnetic stimulation (TMS). The results provide direct evidence that recovery depended on the integrity of the oculomotor regions of the nonlesioned contralesional hemisphere, and that the compensatory network is task-specific.
Resumo:
This review discusses the neurophysiology and neuroanatomy of the cortical control of reflexive and volitional saccades in humans. The main focus is on classical lesion studies and studies using the interference method of transcranial magnetic stimulation (TMS). To understand the behavioural function of a region, it is essential to assess oculomotor deficits after a focal lesion using a variety of oculomotor paradigms, and to study the oculomotor consequences of the lesion in the chronic phase. Saccades are controlled by different cortical regions, which could be partially specialised in the triggering of a specific type of saccade. The division of saccades into reflexive visually guided saccades and intentional or volitional saccades corresponds to distinct regions of the neuronal network, which are involved in the control of such saccades. TMS allows to specifically interfere with the functioning of a region within an intact oculomotor network. TMS provides advantages in terms of temporal resolution, allowing to interfere with brain functioning in the order of milliseconds, thereby allowing to define the time course of saccade planning and execution. In the first part of the paper, we present an overview of the cortical structures important for saccade control, and discuss the pro's and con's of the different methodological approaches to study the cortical oculomotor network. In the second part, the functional network involved in reflexive and volitional saccades is presented. Finally, studies concerning recovery mechanisms after a lesion of the oculomotor cortex are discussed.
Resumo:
Recombinant human erythropoietin (EPO) has been successfully tested as neuroprotectant in brain injury models. The first large clinical trial with stroke patients, however, revealed negative results. Reasons are manifold and may include side-effects such as thrombotic complications or interactions with other medication, EPO concentration, penetration of the blood-brain-barrier and/or route of application. The latter is restricted to systemic application. Here we hypothesize that EPO is neuroprotective in a rat model of acute subdural hemorrhage (ASDH) and that direct cortical application is a feasible route of application in this injury type. The subdural hematoma was surgically evacuated and EPO was applied directly onto the surface of the brain. We injected NaCl, 200, 2000 or 20,000IU EPO per rat i.v. at 15min post-ASDH (400μl autologous venous blood) or NaCl, 0.02, 0.2 or 2IU per rat onto the cortical surface after removal of the subdurally infused blood t at 70min post-ASDH. Arterial blood pressure (MAP), blood chemistry, intracranial pressure (ICP), cerebral blood flow (CBF) and brain tissue oxygen (ptiO2) were assessed during the first hour and lesion volume at 2days after ASDH. EPO 20,000IU/rat (i.v.) elevated ICP significantly. EPO at 200 and 2000IU reduced lesion volume from 38.2±0.6mm(3) (NaCl-treated group) to 28.5±0.9 and 22.2±1.3mm(3) (all p<0.05 vs. NaCl). Cortical application of 0.02IU EPO after ASDH evacuation reduced injury from 36.0±5.2 to 11.2±2.1mm(3) (p=0.007), whereas 0.2IU had no effect (38.0±9.0mm(3)). The highest dose of both application routes (i.v. 20,000IU; cortical 2IU) enlarged the ASDH-induced damage significantly to 46.5±1.7 and 67.9±10.4mm(3) (all p<0.05 vs. NaCl). In order to test whether Tween-20, a solvent of EPO formulation 'NeoRecomon®' was responsible for adverse effects two groups were treated with NaCl or Tween-20 after the evacuation of ASDH, but no difference in lesion volume was detected. In conclusion, EPO is neuroprotective in a model of ASDH in rats and was most efficacious at a very low dose in combination with subdural blood removal. High systemic and topically applied concentrations caused adverse effects on lesion size which were partially due to increased ICP. Thus, patients with traumatic ASDH could be treated with cortically applied EPO but with caution concerning concentration.
Resumo:
BACKGROUND Recovery after arterial ischaemic stroke is known to largely depend on the plastic properties of the brain. The present study examines changes in the network topography of the developing brain after stroke. Effects of brain damage are best assessed by examining entire networks rather than single sites of structural lesions. Relating these changes to post-stroke neuropsychological variables and motor abilities will improve understanding of functional plasticity after stroke. Inclusion of healthy controls will provide additional insight into children's normal brain development. Resting state functional magnetic resonance imaging is a valid approach to topographically investigate the reorganisation of functional networks after a brain lesion. Transcranial magnetic stimulation provides complementary output information. This study will investigate functional reorganisation after paediatric arterial ischaemic stroke by means of resting state functional magnetic resonance imaging and transcranial magnetic stimulation in a cross-sectional plus longitudinal study design. The general aim of this study is to better understand neuroplasticity of the developing brain after stroke in order to develop more efficacious therapy and to improve the post-stroke functional outcome. METHODS The cross-sectional part of the study will investigate the functional cerebral networks of 35 children with chronic arterial ischaemic stroke (time of the lesion >2 years). In the longitudinal part, 15 children with acute arterial ischaemic stroke (shortly after the acute phase of the stroke) will be included and investigations will be performed 3 times within the subsequent 9 months. We will also recruit 50 healthy controls, matched for age and sex. The neuroimaging and neurophysiological data will be correlated with neuropsychological and neurological variables. DISCUSSION This study is the first to combine resting state functional magnetic resonance imaging and transcranial magnetic stimulation in a paediatric population diagnosed with arterial ischaemic stroke. Thus, this study has the potential to uniquely contribute to the understanding of neuronal plasticity in the brains of healthy children and those with acute or chronic brain injury. It is expected that the results will lead to the development of optimal interventions after arterial ischaemic stroke.
Resumo:
Neuropathic pain is caused by long-term modifications of neuronal function in the peripheral nervous system, the spinal cord, and supraspinal areas. Although functional changes in the forebrain are thought to contribute to the development of persistent pain, their significance and precise subcellular nature remain unexplored. Using somatic and dendritic whole-cell patch-clamp recordings from neurons in the anterior cingulate cortex, we discovered that sciatic nerve injury caused an activity-dependent dysfunction of hyperpolarization-activated cyclic nucleotide-regulated (HCN) channels in the dendrites of layer 5 pyramidal neurons resulting in enhanced integration of excitatory postsynaptic inputs and increased neuronal firing. Specific activation of the serotonin receptor type 7 (5-HT7R) alleviated the lesion-induced pathology by increasing HCN channel function, restoring normal dendritic integration, and reducing mechanical pain hypersensitivity in nerve-injured animals in vivo. Thus, serotoninergic neuromodulation at the forebrain level can reverse the dendritic dysfunction induced by neuropathic pain and may represent a potential therapeutical target.
Distinct roles of cortical and pallidal β and γ frequencies in hemiparkinsonian and dyskinetic rats.
Resumo:
Enhanced β band (βB) activity, which is suppressed by levodopa (LD) treatment, has been demonstrated within the basal ganglia (BG) of Parkinson's disease (PD) patients. However, some data suggest that Parkinsonian symptoms are not directly related to this brain frequency and therefore, its causative role remains questionable. A less explored phenomenon is the link between the γ band (γB) and PD phenomenology. Here, we monitored the development of the oscillatory activity during chronic LD depletion and LD treatment in Parkinsonian and levodopa-induced dyskinesia (LID) in rats. We found a significant and bilateral power increase in the high βB frequencies (20-30Hz) within the first 10days after 6-hydroxydopamine (6-OHDA) lesion, which was in accordance with a significant depletion of dopaminergic fibers in the striatum. We also observed a clear-cut γB increase during LD treatment. The development of LID was characterized by a slight increase in the cumulative power of βB accompanied by a large augmentation in the γB frequency (60-80Hz). This latter effect reached a plateau in the frontal cortex bilaterally and the left globus pallidus after the second week of LD treatment. Our data suggest that the βB parallels the emergence of Parkinsonian signs and can be taken as a predictive sign of DA depletion, matching TH-staining reduction. On the other hand, the γB is strictly correlated to the development of LID. LD treatment had an opposite effect on βB and γB, respectively.
Resumo:
Aim The aim of this study was to describe neuroimaging patterns associated with arterial ischaemic stroke (AIS) in childhood and to differentiate them according to stroke aetiology. Method Clinical and neuroimaging (acute and follow-up) findings were analysed prospectively in 79 children (48 males, 31 females) aged 2 months to 15 years 8 months (median 5y 3mo) at the time of stroke by the Swiss Neuropaediatric Stroke Registry from 2000 to 2006. Results Stroke was confirmed in the acute period in 36 out of 41 children who underwent computed tomography, in 53 of 57 who underwent T2-weighted magnetic resonance imaging (MRI) and in all 48 children who underwent diffusion-weighted MRI. AIS occurred in the anterior cerebral artery (ACA) in 63 participants and in all cases was associated with lesions of the middle cerebral artery (MCA). The lesion was cortical-subcortical in 30 out of 63 children, cortical in 25 out of 63, and subcortical in 8 of 63 children. Among participants with AIS in the posterior circulation territory, the stroke was cortical-subcortical in 8 out of 16, cortical in 5 of 16, and thalamic in 3 out of 16 children. Interpretation AIS mainly involves the anterior circulation territory, with both the ACA and the MCA being affected. The classification of Ganesan is an appropriate population-based classification for our Swiss cohort, but the neuroimaging pattern alone is insufficient to determine the aetiology of stroke in a paediatric population. The results show a poor correlation between lesion pattern and aetiology.
Resumo:
To evaluate retrospectively in patients with Crohn's disease (CD) if magnetic resonance (MR) motility alterations correlate with CD typical lesions leading to an increased detection rate.
Resumo:
Introduction The objective of this study was to assess three-dimensional bone geometry and density at the epiphysis and shaft of the third meta-carpal bone of rheumatoid arthritis (RA) patients in comparison to healthy controls with the novel method of peripheral quantitative computed tomography (pQCT). Methods PQCT scans were performed in 50 female RA patients and 100 healthy female controls at the distal epiphyses and shafts of the third metacarpal bone, the radius and the tibia. Reproducibility was determined by coefficient of varia-tion. Bone densitometric and geometric parameters were compared between the two groups and correlated to disease characteristics. Results Reproducibility of different pQCT parameters was between 0.7% and 2.5%. RA patients had 12% to 19% lower trabecular bone mineral density (BMD) (P ≤ 0.001) at the distal epiphyses of radius, tibia and metacarpal bone. At the shafts of these bones RA patients had 7% to 16% thinner cortices (P ≤ 0.03). Total cross-sectional area (CSA) at the metacarpal bone shaft of pa-tients was larger (between 5% and 7%, P < 0.02), and relative cortical area was reduced by 13%. Erosiveness by Ratingen score correlated negatively with tra-becular and total BMD at the epiphyses and shaft cortical thickness of all measured bones (P < 0.04). Conclusions Reduced trabecular BMD and thinner cortices at peripheral bones, and a greater bone shaft diameter at the metacarpal bone suggest RA spe-cific bone alterations. The proposed pQCT protocol is reliable and allows measuring juxta-articular trabecular BMD and shaft geometry at the metacarpal bone.
Resumo:
To evaluate the capability of spectral computed tomography (CT) to improve the characterization of cystic high-attenuation lesions in a renal phantom and to test the hypothesis that spectral CT will improve the differentiation of cystic renal lesions with high protein content and those that have undergone hemorrhage or malignant contrast-enhancing transformation.
Resumo:
This study investigated the differences in clinical outcomes between patients with bifurcation lesions (BL) treated with a biolimus-eluting stent (BES) with a biodegradable polymer, and a sirolimus-eluting stent (SES) with a durable polymer.
Evaluation of perpendicular reflection intensity for assessment of caries lesion activity/inactivity
Resumo:
The aim of this study was to evaluate, using visual assessment, an experimental optical sensor measuring perpendicular reflection intensity (PRI) as an indicator of enamel caries lesion activity/inactivity. Forty teeth with either an active or an inactive enamel lesion were selected from a pool of extracted teeth. Each tooth was cut into halves, with a clinically sound half and a half with a non-cavitated enamel lesion. After gentle plaque removal, the teeth were kept moistened. The lesions were then photographed and a defined measuring site per lesion was chosen and indicated with an arrow on a printout. Independently, the chosen site was visually assessed for lesion activity, and its glossiness was measured with PRI assessment. Surface roughness (SR) was assessed with optical profilometry using a confocal microscope. Visual assessment and PRI were repeated after several weeks and a reliability analysis was performed. For enamel lesions visually scored as active versus inactive, significantly different values were obtained with both PRI and SR. PRI values of the clinically sound control surfaces were significantly different only from active lesions. Generally, inactive lesions had the same glossiness and the same roughness as the sound control surfaces. The reliabilities for visual assessment (? = 0.89) and for PRI (ICC = 0.86) were high. It is concluded that, within the limits of this study, PRI can be regarded as a promising tool for quantitative enamel lesion activity assessment. There is scope and potential for the PRI device to be considerably improved for in vivo use.
Resumo:
Blue-light fundus autofluorescence (FAF) imaging is currently widely used for assessing dry age-related macular degeneration (ARMD). However, at this wavelength, the fovea appears as circular zone of marked hypofluorescence, due to the absorption of macular pigment (MP). This dark spot could be misinterpreted as an atrophic area and could lead to difficulties in identifying small, central changes. The purpose of the study was to analyze differences in image quality, FAF patterns, and lesion size, when using conventional blue-light (Λ(1) = 488 nm) and green-light (Λ(2) = 514 nm) FAF.
Resumo:
The aim of this study was to determine gender differences in atherosclerotic lesion morphology and distribution pattern of patients with critical limb ischemia (CLI).