24 resultados para Cortex cerebral

em BORIS: Bern Open Repository and Information System - Berna - Suiça


Relevância:

70.00% 70.00%

Publicador:

Resumo:

Excitatory neurons at the level of cortical layer 4 in the rodent somatosensory barrel field often display a strong eccentricity in comparison with layer 4 neurons in other cortical regions. In rat, dendritic symmetry of the 2 main excitatory neuronal classes, spiny stellate and star pyramid neurons (SSNs and SPNs), was quantified by an asymmetry index, the dendrite-free angle. We carefully measured shrinkage and analyzed its influence on morphological parameters. SSNs had mostly eccentric morphology, whereas SPNs were nearly radially symmetric. Most asymmetric neurons were located near the barrel border. The axonal projections, analyzed at the level of layer 4, were mostly restricted to a single barrel except for those of 3 interbarrel projection neurons. Comparing voxel representations of dendrites and axon collaterals of the same neuron revealed a close overlap of dendritic and axonal fields, more pronounced in SSNs versus SPNs and considerably stronger in spiny L4 neurons versus extragranular pyramidal cells. These observations suggest that within a barrel dendrites and axons of individual excitatory cells are organized in subcolumns that may confer receptive field properties such as directional selectivity to higher layers, whereas the interbarrel projections challenge our view of barrels as completely independent processors of thalamic input.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

By using an infant rat model of pneumococcal meningitis, we determined whether endothelins contribute to neuronal damage in this disease. Cerebrospinal fluid analysis demonstrated a significant increase of endothelin-1 in infected animals compared with uninfected controls. Histopathological examination 24 hours after infection showed brain damage in animals treated with ceftriaxone alone (median, 9.2% of cortex; range, 0-49.1%). In infected animals treated intraperitoneally with the endothelin antagonist bosentan (30 mg/kg, every 12 hours) also, injury was reduced to 0.5% (range, 0-8.6%) of cortex. Cerebral blood flow was reduced in infected animals (6.5 +/- 4.0 ml/min/100 g of brain vs 14.9 +/- 9.1 ml/min/100 g in controls. Treatment with bosentan restored cerebral blood flow to levels similar to controls (12.8 +/- 5.3 ml/min/100 g). Improved blood flow was not mediated by nitric oxide production, because bosentan had no effect on cerebrospinal fluid or plasma nitrite/nitrate concentrations at 6, 12, or 18 hours. These data indicate that endothelins contribute to neuronal injury in this model of pneumococcal meningitis by causing cerebral ischemia.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Theta burst stimulation (TBS) is a novel variant of repetitive transcranial magnetic stimulation (rTMS), which induces changes in neuronal excitability persisting up to 1h. When elicited in the primary motor cortex, such physiological modulations might also have an impact on motor behavior. In the present study, we applied TBS in combination with pseudo continuous arterial spin labeling (pCASL) in order to address the question of whether TBS effects are measurable by means of changes in physiological parameters such as cerebral blood flow (CBF) and if TBS-induced plasticity can modify motor behavior. Twelve right-handed healthy subjects were stimulated using an inhibitory TBS protocol at subthreshold stimulation intensity targeted over the right motor cortex. The control condition consisted of within-subject Sham treatment in a crossover design. PCASL was performed before (pre TBS/pre Sham) and immediately after treatment (post TBS/post Sham). During the pCASL runs, the subjects performed a sequential fingertapping task with the left hand at individual maximum speed. There was a significant increase of CBF in the primary motor cortex after TBS, but not after Sham. It is assumed that inhibitory TBS induced a "local virtual lesion" which leads to the mobilization of more neuronal resources. There was no TBS-specific modulation in motor behavior, which might indicate that acute changes in brain plasticity caused by TBS are immediately compensated. This compensatory reaction seems to be observable at the metabolic, but not at the behavioral level.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

This study compared the effects of isoflurane in pigs (n=10 Yorkshire-Landrace cross) and dairy goats (n=10) by evaluation of electroencephalographic (EEG) burst suppression thresholds (BST) in the cerebral cortex and minimum alveolar concentration (MAC) values in the spinal cord. The study also investigated whether individual MAC values can predict the effects of isoflurane on the cerebral cortex. MAC values and BST/MAC ratios were significantly different between species. Inhibition of movement by isoflurane may be less effective in pigs than in goats. No significant correlation was found between individual MAC and BST values, indicating that in single animals the individual MAC poorly reflects the cerebrocortical depressant effect of isoflurane in pigs and goats.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Mice that lack all beta1-class integrins in neurons and glia die prematurely after birth with severe brain malformations. Cortical hemispheres and cerebellar folia fuse, and cortical laminae are perturbed. These defects result from disorganization of the cortical marginal zone, where beta1-class integrins regulate glial endfeet anchorage, meningeal basement membrane remodeling, and formation of the Cajal-Retzius cell layer. Surprisingly, beta1-class integrins are not essential for neuron-glia interactions and neuronal migration during corticogenesis. The phenotype of the beta1-deficient mice resembles pathological changes observed in human cortical dysplasias, suggesting that defective integrin-mediated signal transduction contributes to the development of some of these diseases.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Matrix metalloproteinases (MMPs) and TNF-alpha converting enzyme (TACE) contribute to the pathophysiology of bacterial meningitis. To date, MMP-inhibitors studied in models of meningitis were compromised by their hydrophobic nature. We investigated the pharmacokinetics and the effect of TNF484, a water-soluble hydroxamate-based inhibitor of MMP and TACE, on disease parameters and brain damage in a neonatal rat model of pneumococcal meningitis. At 1 mg/kg q6h TNF484 reduced soluble TNF-alpha and the collagen degradation product hydroxyproline in the cerebrospinal fluid. Clinically, TNF484 attenuated the incidence of seizures and was neuroprotective in the cortex. Water-soluble MMP-inhibitors may hold promise in the therapy of bacterial meningitis.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Cerebral achromatopsia is a rare disorder of colour vision caused by bilateral damage to the occipito-temporal cortex. Patients with cerebral achromatopsia are commonly said to suffer due to their disturbed colour sense. Here, we report the case of a patient with cerebral achromatopsia who was initially unaware of his deficit, although three experiments with eye movement recordings demonstrated his severe inability to use colour information in everyday tasks. During two months, the evolution of his colour vision deficit was followed with repeated standardized colour vision tests and eye movement recordings. While his performance continuously improved, he became more and more aware of the deficit. Only after colour vision had almost normalized, his subjective colour sensation was inconspicuous again. The simultaneous occurrence of achromatopsia and the corresponding anosognosia and their parallel recovery suggest that both deficits were due to dysfunction of the same brain region. Consequently, the subjective experience of colour loss in achromatopsia may depend on the residual function of the damaged colour centre.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Reduced motor activity has been reported in schizophrenia and was associated with subtype, psychopathology and medication. Still, little is known about the neurobiology of motor retardation. To identify neural correlates of motor activity, resting state cerebral blood flow (CBF) was correlated with objective motor activity of the same day. Participants comprised 11 schizophrenia patients and 14 controls who underwent magnetic resonance imaging with arterial spin labeling and wrist actigraphy. Patients had reduced activity levels and reduced perfusion of the left parahippocampal gyrus, left middle temporal gyrus, right thalamus, and right prefrontal cortex. In controls, but not in schizophrenia, CBF was correlated with activity in the right thalamic ventral anterior (VA) nucleus, a key module within basal ganglia-cortical motor circuits. In contrast, only in schizophrenia patients positive correlations of CBF and motor activity were found in bilateral prefrontal areas and in the right rostral cingulate motor area (rCMA). Grey matter volume correlated with motor activity only in the left posterior cingulate cortex of the patients. The findings suggest that basal ganglia motor control is impaired in schizophrenia. In addition, CBF of cortical areas critical for motor control was associated with volitional motor behavior, which may be a compensatory mechanism for basal ganglia dysfunction.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Despite the increased use of intracranial neuromonitoring during experimental subarachnoid hemorrhage (SAH), coordinates for probe placement in rabbits are lacking. This study evaluates the safety and reliability of using outer skull landmarks to identify locations for placement of cerebral blood flow (CBF) and intraparenchymal intracranial pressure (ICP) probes. Experimental SAH was performed in 17 rabbits using an extracranial-intracranial shunt model. ICP probes were placed in the frontal lobe and compared to measurements recorded from the olfactory bulb. CBF probes were placed in various locations in the frontal cortex anterior to the coronary suture. Insertion depth, relation to the ventricular system, and ideal placement location were determined by post-mortem examination. ICP recordings at the time of SAH from the frontal lobe did not differ significantly from those obtained from the right olfactory bulb. Ideal coordinates for intraparenchymal CBF probes in the left and right frontal lobe were found to be located 4.6±0.9 and 4.5±1.2 anterior to the bregma, 4.7±0.7mm and 4.7±0.5mm parasagittal, and at depths of 4±0.5mm and 3.9±0.5mm, respectively. The results demonstrate that the presented coordinates based on skull landmarks allow reliable placement of intraparenchymal ICP and CBF probes in rabbit brains without the use of a stereotactic frame.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The default-mode network (DMN) was shown to have aberrant blood oxygenation-level-dependent (BOLD) activity in major depressive disorder (MDD). While BOLD is a relative measure of neural activity, cerebral blood flow (CBF) is an absolute measure. Resting-state CBF alterations have been reported in MDD. However, the association of baseline CBF and CBF fluctuations is unclear in MDD. Therefore, the aim was to investigate the CBF within the DMN in MDD, applying a strictly data-driven approach. In 22 MDD patients and 22 matched healthy controls, CBF was acquired using arterial spin labeling (ASL) at rest. A concatenated independent component analysis was performed to identify the DMN within the ASL data. The perfusion of the DMN and its nodes was quantified and compared between groups. The DMN was identified in both groups with high spatial similarity. Absolute CBF values within the DMN were reduced in MDD patients (p<0.001). However, after controlling for whole-brain gray matter CBF and age, the group difference vanished. In patients, depression severity was correlated with reduced perfusion in the DMN in the posterior cingulate cortex and the right inferior parietal lobe. Hypoperfusion within the DMN in MDD is not specific to the DMN. Still, depression severity was linked to DMN node perfusion, supporting a role of the DMN in depression pathobiology. The finding has implications for the interpretation of BOLD functional magnetic resonance imaging data in MDD.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Repetitive transcranial magnetic stimulation (rTMS) is a means to study the function and connectivity of brain areas. The present study addressed the question of hemispheric asymmetry of frontal regions and aimed to further understand the acute effects of high- and low-frequency rTMS on regional cerebral blood flow (rCBF). Sixteen healthy right-handed men were imaged using H(2)(15)O positron emission tomography (PET) immediately after stimulation. High (10 Hz)- and low (1 Hz)-frequency suprathreshold short-duration rTMS was applied over either the left or right dorsolateral prefrontal cortex (DLPFC). Slow and fast rTMS applied over the left DLPFC significantly increased CBF in the stimulated area. Compared to baseline, slow rTMS induced a significant increase in CBF contralateral to the stimulation site, in the right caudate body and in the anterior cingulum. Furthermore, slow rTMS decreased CBF in the orbitofrontal cortex (OFC, ipsilateral to stimulation side). Fast rTMS applied over the right DLPFC was associated with increased activity at the stimulation site, in the bilateral orbitofrontal cortex and in the left medial thalamus compared to 1-Hz rTMS. These results show that rCBF changes induced by prefrontal rTMS differ upon hemisphere stimulated and vary with stimulation frequency. These differential neurophysiological effects of short-train rTMS with respect to side and frequency suggest hemisphere-dependent functional circuits of frontal cortico-subcortical areas.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

RATIONALE: High levels of calcium independent phospholipase A2 (iPLA2) are present in certain regions of the brain, including the cerebral cortex, striatum, and cerebellum (Ong et al. 2005). OBJECTIVES: The present study was carried out to elucidate a possible role of the enzyme in the motor system. METHODS: The selective iPLA2 inhibitor bromoenol lactone (BEL), the nonselective PLA2 inhibitor methyl arachidonyl fluorophosphonate (MAFP), and an antisense oligonucleotide were used to interfere with iPLA2 activity in various components of the motor system. Control animals received injections of carrier (phosphate buffered saline, PBS) at the same locations. The number of vacuous chewing movements (VCM) was counted from 1 to 14 days after injection. RESULTS: Rats that received BEL and high-dose MAFP injections in the striatum, thalamus, and motor cortex, but not the cerebellum, showed significant increase in VCM, compared to those injected with PBS at these locations. BEL-induced VCM were blocked by intramuscular injections of the anticholinergic drug, benztropine. Increased VCM was also observed after intrastriatal injection of antisense oligonucleotide to iPLA2. The latter caused a decrease in striatal iPLA2 levels, confirming a role of decreased enzyme activity in the appearance of VCM. CONCLUSIONS: These results suggest an important role for iPLA2 in the cortex-striatum-thalamus-cortex circuitry. It is postulated that VCM induced by iPLA2 inhibition may be a model of human parkinsonian tremor.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

P300 is an event-related potential that is elicited by an oddball paradigm. In several neuropsychiatric diseases, differences in latencies and amplitude compared to healthy subjects have been reported. Because of its clinical significance, several investigations have tried to elucidate the intracranial origins of the P300 component. In the present study we could demonstrate a network of P300 generators. Investigated were 15 healthy subjects with an acoustical oddball paradigm within a fMRI block design, which enabled us to exclude attention or acoustical processing effects. The inferior and middle frontal, superior temporal, lower parietal cortex, the insula and the anterior cingulum were significantly activated symmetrical in both hemispheres.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We have previously shown that antioxidants such as a-phenyl-tert-butyl nitrone or N-acetylcysteine attenuate cortical neuronal injury in infant rats with bacterial meningitis, suggesting that oxidative alterations play an important role in this disease. However, the precise mechanism(s) by which antioxidants inhibit this injury remain(s) unclear. We therefore studied the extent and location of protein oxidation in the brain using various biochemical and immunochemical methods. In cortical parenchyma, a trend for increased protein carbonyls was not evident until 21 hours after infection and the activity of glutamine synthetase (another index of protein oxidation) remained unchanged. Consistent with these results, there was no evidence for oxidative alterations in the cortex by various immunohistochemical methods even in cortical lesions. In contrast, there was a marked increase in carbonyls, 4-hydroxynonenal protein adducts and manganese superoxide dismutase in the cerebral vasculature. Elevated lipid peroxidation was also observed in cerebrospinal fluid and occasionally in the hippocampus. All of these oxidative alterations were inhibited by treatment of infected animals with N-acetylcysteine or alpha-phenyl-tert-butyl nitrone. Because N-acetylcysteine does not readily cross the blood-brain barrier and has no effect on the loss of endogenous brain antioxidants, its neuroprotective effect is likely based on extraparenchymal action such as inhibition of vascular oxidative alterations.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The aim of this study was to investigate the effects of inner and heard speech on cerebral hemodynamics and oxygenation in the anterior prefrontal cortex (PFC) using functional near-infrared spectroscopy and to test whether potential effects were caused by alterations in the arterial carbon dioxide pressure (PaCO2). Twenty-nine healthy adult volunteers performed six different tasks of inner and heard speech according to a randomized crossover design. During the tasks, we generally found a decrease in PaCO2 (only for inner speech), tissue oxygen saturation (StO2), oxyhemoglobin ([O2Hb]), total hemoglobin ([tHb]) concentration and an increase in deoxyhemoglobin concentration ([HHb]). Furthermore, we found significant relations between changes in [O2Hb], [HHb], [tHb], or StO2 and the participants’ age, the baseline PETCO2, or certain speech tasks. We conclude that changes in breathing during the tasks led to lower PaCO2 (hypocapnia) for inner speech. During heard speech, no significant changes in PaCO2 occurred, but the decreases in StO2, [O2Hb], and [tHb] suggest that changes in PaCO2 were also involved here. Different verse types (hexameter and alliteration) led to different changes in [tHb], implying different brain activations. In conclusion, StO2, [O2Hb], [HHb], and [tHb] are affected by interplay of both PaCO2 reactivity and functional brain activity.