9 resultados para Corn - Drying

em BORIS: Bern Open Repository and Information System - Berna - Suiça


Relevância:

20.00% 20.00%

Publicador:

Resumo:

A long-term study over 25 months was conducted to evaluate the effects of genetically modified corn on performance of lactating dairy cows. Thirty-six dairy cows were assigned to two feeding groups and fed with diets based on whole-crop silage, kernels and whole-crop cobs from Bt-corn (Bt-MON810) or its isogenic not genetically modified counterpart (CON) as main components. The study included two consecutive lactations. There were no differences in the chemical composition and estimated net energy content of Bt-MON810 and CON corn components and diets. CON feed samples were negative for the presence of Cry1Ab protein, while in Bt-MON810 feed samples the Cry1Ab protein was detected. Cows fed Bt-MON810 corn had a daily Cry1Ab protein intake of 6.0 mg in the first lactation and 6.1 mg in the second lactation of the trial. Dry matter intake (DMI) was 18.8 and 20.7 kg/cow per day in the first and the second lactation of the trial, with no treatment differences. Similarly, milk yield (23.8 and 29.0 kg/cow per day in the first and the second lactation of the trial) was not affected by dietary treatment. There were no consistent effects of feeding MON810 or its isogenic CON on milk composition or body condition. Thus, the present long-term study demonstrated the compositional and nutritional equivalence of Bt-MON810 and its isogenic CON.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Thirty-two multiparous Holstein cows were used to investigate the effects of chromium-l-methionine (Cr-Met) supplementation and dietary grain source on performance and lactation during the periparturient period. Cows were fed a total mixed ration consisting of either a barley-based diet (BBD) or a corn-based diet (CBD) from 21 d before anticipated calving through 28 d after calving. The Cr-Met was supplemented at dosages of 0 or 0.08 mg of Cr/kg of metabolic body weight. The study was designed as a randomized complete block design with 2 (Cr-Met levels) x 2 (grain sources) factorial arrangement. There was no Cr effect on prepartum dry matter intake (DMI) or postpartum DMI, body weight (BW), net energy balance, and whole tract apparent digestibility of nutrients. Prepartum DMI as a percentage of BW tended to increase with Cr-Met. Supplemental Cr-Met tended to increase milk yield whereas milk protein percentage decreased. Pre- and postpartum DMI, BW, net energy balance, milk yield, and milk composition were not affected by substituting ground barley with ground corn. The addition of Cr-Met increased prepartum DMI and tended to increase postpartum DMI of the BBD but not the CBD. The change in prepartum DMI was smaller when the BBD was supplemented with Cr-Met but remained unchanged when the CBD was supplemented with Cr-Met. Yields of crude protein and total solids in milk and prepartum digestibility of DM and organic matter tended to increase when Cr-Met was added to the BBD but remained unchanged when added to the CBD. Periparturient cows failed to respond to the grain source of the diet, whereas they showed greater response in milk yield to diets supplemented with Cr-Met. In conclusion, the present results demonstrate that the beneficial effect of Cr-Met supplementation during the periparturient period to improve feed intake may depend on the grain source of the diet.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Understanding how organisms control soil water dynamics is a major research goal in dryland ecology. Although previous studies have mostly focused on the role of vascular plants on the hydrological cycle of drylands, recent studies highlight the importance of biological soil crusts formed by lichens, mosses, and cyanobacteria (biocrusts) as a major player in this cycle. We used data from a 6.5-year study to evaluate how multiple abiotic (rainfall characteristics, temperature, and initial soil moisture) and biotic (vascular plants and biocrusts) factors interact to determine wetting and drying processes in a semi-arid grassland from Central Spain. We found that the shrub Retama sphaerocarpa and biocrusts with medium cover (25–75%) enhanced water gain and slowed drying compared with bare ground areas (BSCl). Well-developed biocrusts (>75% cover) gained more water, but lost it faster than BSCl microsites. The grass Stipa tenacissima reduced water gain due to rainfall interception, but increased soil moisture retention compared to BSCl microsites. Biotic modulation of water dynamics was the result of different mechanisms acting in tandem and often in opposite directions. For instance, biocrusts promoted an exponential behavior during the first stage of the drying curve, but reduced the importance of soil characteristics that accentuate drying rates. Biocrust-dominated microsites gained a similar amount of water than vascular plants, although they lost it faster than vascular plants during dry periods. Our results emphasize the importance of biocrusts for water dynamics in drylands, and illustrate the potential mechanisms behind their effects. They will help to further advance theoretical and modeling efforts on the hydrology of drylands and their response to ongoing climate change.