2 resultados para Cork taint
em BORIS: Bern Open Repository and Information System - Berna - Suiça
Resumo:
Background: Small Ruminant Lentiviruses (SRLV) are widespread in Canadian sheep and goats and represent an important health issue in these animals. There is however no data about the genetic diversity of Caprine Arthritis Encephalitis Virus (CAEV) or Maedi Visna Virus (MVV) in this country. Findings: We performed a molecular and phylogenetic analysis of sheep and goat lentiviruses from a small geographic area in Canada using long sequences from the gag region of 30 infected sheep and 36 infected goats originating from 14 different flocks. Pairwise DNA distance and phylogenetic analyses revealed that all SRLV sequences obtained from sheep clustered tightly with prototypical Maedi visna sequences from America. Similarly, all SRLV strains obtained from goats clustered tightly with prototypical US CAEV-Cork strain. Conclusions: The data reported in this study suggests that Canadian and US SRLV strains share common origins. In addition, the molecular data failed to bring to light any evidence of past cross species transmission between sheep and goats, which is consistent with the type of farming practiced in this part of the country where single species flocks predominate and where opportunities of cross species transmissions are proportionately low.
Resumo:
Recently, the French National Institute for Agricultural Research appointed an expert committee to review the issue of pain in food-producing farm animals. To minimise pain, the authors developed a '3S' approach accounting for 'Suppress, Substitute and Soothe' by analogy with the '3Rs' approach of 'Reduction, Refinement and Replacement' applied in the context of animal experimentation. Thus, when addressing the matter of pain, the following steps and solutions could be assessed, in the light of their feasibility (technical constraints, logistics and regulations), acceptability (societal and financial aspects) and availability. The first solution is to suppress any source of pain that brings no obvious advantage to the animals or the producers, as well as sources of pain for which potential benefits are largely exceeded by the negative effects. For instance, tail docking of cattle has recently been eliminated. Genetic selection on the basis of resistance criteria (as e.g. for lameness in cattle and poultry) or reduction of undesirable traits (e.g. boar taint in pigs) may also reduce painful conditions or procedures. The second solution is to substitute a technique causing pain by another less-painful method. For example, if dehorning cattle is unavoidable, it is preferable to perform it at a very young age, cauterising the horn bud. Animal management and constraint systems should be designed to reduce the risk for injury and bruising. Lastly, in situations where pain is known to be present, because of animal management procedures such as dehorning or castration, or because of pathology, for example lameness, systemic or local pharmacological treatments should be used to soothe pain. These treatments should take into account the duration of pain, which, in the case of some management procedures or diseases, may persist for longer periods. The administration of pain medication may require the intervention of veterinarians, but exemptions exist where breeders are allowed to use local anaesthesia (e.g. castration and dehorning in Switzerland). Extension of such exemptions, national or European legislation on pain management, or the introduction of animal welfare codes by retailers into their meat products may help further developments. In addition, veterinarians and farmers should be given the necessary tools and information to take into account animal pain in their management decisions.