10 resultados para Coordinate System
em BORIS: Bern Open Repository and Information System - Berna - Suiça
Resumo:
This work addresses the evolution of an artificial neural network (ANN) to assist in the problem of indoor robotic localization. We investigate the design and building of an autonomous localization system based on information gathered from wireless networks (WN). The article focuses on the evolved ANN, which provides the position of a robot in a space, as in a Cartesian coordinate system, corroborating with the evolutionary robotic research area and showing its practical viability. The proposed system was tested in several experiments, evaluating not only the impact of different evolutionary computation parameters but also the role of the transfer functions on the evolution of the ANN. Results show that slight variations in the parameters lead to significant differences on the evolution process and, therefore, in the accuracy of the robot position.
Resumo:
OBJECTIVE: To design and evaluate a novel computer-assisted, fluoroscopy-based planning and navigation system for minimally invasive ventral spondylodesis of thoracolumbar fractures. MATERIALS AND METHODS: Instruments and an image intensifier are tracked with the SurgiGATE navigation system (Praxim-Medivision). Two fluoroscopic images, one acquired from anterior-posterior (AP) direction and the other from lateral-medial (LM) direction, are used for the complete procedure of planning and navigation. Both of them are calibrated with a custom-made software to recover their projection geometry and to co-register them to a common patient reference coordinate system, which is established by attaching an opto-electronically trackable dynamic reference base (DRB) on the operated vertebra. A bi-planar landmark reconstruction method is used to acquire deep-seated anatomical landmarks such that an intraoperative planning of graft bed can be interactively done. Finally, surgical actions such as the placement of the stabilization devices and the formation of the graft bed using a custom-made chisel are visualized to the surgeon by superimposing virtual instrument representations onto the acquired images. The distance between the instrument tip and each wall of the planned graft bed are calculated on the fly and presented to the surgeon so that the surgeon could formalize the graft bed exactly according to his/her plan. RESULTS: Laboratory studies on phantom and on 27 plastic vertebras demonstrate the high precision of the proposed navigation system. Compared with CT-based measurement, a mean error of 1.0 mm with a standard deviation of 0.1 mm was found. CONCLUSIONS: The proposed computer assisted, fluoroscopy-based planning and navigation system promises to increase the accuracy and reliability of minimally invasive ventral spondylodesis of thoracolumbar fractures.
Resumo:
Derivation of probability estimates complementary to geophysical data sets has gained special attention over the last years. Information about a confidence level of provided physical quantities is required to construct an error budget of higher-level products and to correctly interpret final results of a particular analysis. Regarding the generation of products based on satellite data a common input consists of a cloud mask which allows discrimination between surface and cloud signals. Further the surface information is divided between snow and snow-free components. At any step of this discrimination process a misclassification in a cloud/snow mask propagates to higher-level products and may alter their usability. Within this scope a novel probabilistic cloud mask (PCM) algorithm suited for the 1 km × 1 km Advanced Very High Resolution Radiometer (AVHRR) data is proposed which provides three types of probability estimates between: cloudy/clear-sky, cloudy/snow and clear-sky/snow conditions. As opposed to the majority of available techniques which are usually based on the decision-tree approach in the PCM algorithm all spectral, angular and ancillary information is used in a single step to retrieve probability estimates from the precomputed look-up tables (LUTs). Moreover, the issue of derivation of a single threshold value for a spectral test was overcome by the concept of multidimensional information space which is divided into small bins by an extensive set of intervals. The discrimination between snow and ice clouds and detection of broken, thin clouds was enhanced by means of the invariant coordinate system (ICS) transformation. The study area covers a wide range of environmental conditions spanning from Iceland through central Europe to northern parts of Africa which exhibit diverse difficulties for cloud/snow masking algorithms. The retrieved PCM cloud classification was compared to the Polar Platform System (PPS) version 2012 and Moderate Resolution Imaging Spectroradiometer (MODIS) collection 6 cloud masks, SYNOP (surface synoptic observations) weather reports, Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observations (CALIPSO) vertical feature mask version 3 and to MODIS collection 5 snow mask. The outcomes of conducted analyses proved fine detection skills of the PCM method with results comparable to or better than the reference PPS algorithm.
Resumo:
OBJECTIVES Recently, an MRI quantification sequence has been developed which can be used to acquire T1- and T2-relaxation times as well as proton density (PD) values. Those three quantitative values can be used to describe soft tissue in an objective manner. The purpose of this study was to investigate the applicability of quantitative cardiac MRI for characterization and differentiation of ischaemic myocardial lesions of different age. MATERIALS AND METHODS Fifty post-mortem short axis cardiac 3 T MR examinations have been quantified using a quantification sequence. Myocardial lesions were identified according to histology and appearance in MRI images. Ischaemic lesions were assessed for mean T1-, T2- and proton density values. Quantitative values were plotted in a 3D-coordinate system to investigate the clustering of ischaemic myocardial lesions. RESULTS A total of 16 myocardial lesions detected in MRI images were histologically characterized as acute lesions (n = 8) with perifocal oedema (n = 8), subacute lesions (n = 6) and chronic lesions (n = 2). In a 3D plot comprising the combined quantitative values of T1, T2 and PD, the clusters of all investigated lesions could be well differentiated from each other. CONCLUSION Post-mortem quantitative cardiac MRI is feasible for characterization and discrimination of different age stages of myocardial infarction. KEY POINTS • MR quantification is feasible for characterization of different stages of myocardial infarction. • The results provide the base for computer-aided MRI cardiac infarction diagnosis. • Diagnostic criteria may also be applied for living patients.
Resumo:
PURPOSE Despite the fact that new and modern short-stems allow bone sparing and saving of soft-tissue and muscles, we still face the challenge of anatomically reconstructing the femoro-acetabular offset and leg length. Therefore a radiological and clinical analysis of a short-stem reconstruction of the femoro-acetabular offset and leg length was performed. METHODS Using an antero-lateral approach, the optimys short-stem (Mathys Ltd, Bettlach, Switzerland) was implanted in 114 consecutive patients in combination with a cementless cup (Fitmore, Zimmer, Indiana, USA; vitamys RM Pressfit, Mathys Ltd, Bettlach, Switzerland). Pre- and postoperative X-rays were done in a standardized technique. In order to better analyse and compare X-ray data a special double coordinate system was developed for measuring femoral- and acetabular offset. Harris hip score was assessed before and six weeks after surgery. Visual analogue scale (VAS) satisfaction, leg length difference and the existence of gluteal muscle insufficiency were also examined. RESULTS Postoperative femoral offset was significantly increased by a mean of 5.8 mm. At the same time cup implantation significantly decreased the acetabular offset by a mean of 3.7 mm, which resulted in an increased combined femoro-acetabular offset of 2.1 mm. Postoperatively, 81.7 % of patients presented with equal leg length. The maximum discrepancy was 10 mm. Clinically, there were no signs of gluteal insufficiency. No luxation occurred during hospitalization. The Harris hip score improved from 47.3 before to 90.1 points already at six weeks after surgery while the mean VAS satisfaction was 9.1. CONCLUSION The analysis showed that loss of femoro-acetabular offset can be reduced with an appropriate stem design. Consequently, a good reconstruction of anatomy and leg length can be achieved. In the early postoperative stage the clinical results are excellent.
Resumo:
We introduce a new boundary layer formalism on the basis of which a class of exact solutions to the Navier–Stokes equations is derived. These solutions describe laminar boundary layer flows past a flat plate under the assumption of one homogeneous direction, such as the classical swept Hiemenz boundary layer (SHBL), the asymptotic suction boundary layer (ASBL) and the oblique impingement boundary layer. The linear stability of these new solutions is investigated, uncovering new results for the SHBL and the ASBL. Previously, each of these flows had been described with its own formalism and coordinate system, such that the solutions could not be transformed into each other. Using a new compound formalism, we are able to show that the ASBL is the physical limit of the SHBL with wall suction when the chordwise velocity component vanishes while the homogeneous sweep velocity is maintained. A corresponding non-dimensionalization is proposed, which allows conversion of the new Reynolds number definition to the classical ones. Linear stability analysis for the new class of solutions reveals a compound neutral surface which contains the classical neutral curves of the SHBL and the ASBL. It is shown that the linearly most unstable Görtler–Hämmerlin modes of the SHBL smoothly transform into Tollmien–Schlichting modes as the chordwise velocity vanishes. These results are useful for transition prediction of the attachment-line instability, especially concerning the use of suction to stabilize boundary layers of swept-wing aircraft.
Resumo:
Standard stereotaxic reference systems play a key role in human brain studies. Stereotaxic coordinate systems have also been developed for experimental animals including non-human primates, dogs, and rodents. However, they are lacking for other species being relevant in experimental neuroscience including sheep. Here, we present a spatial, unbiased ovine brain template with tissue probability maps (TPM) that offer a detailed stereotaxic reference frame for anatomical features and localization of brain areas, thereby enabling inter-individual and cross-study comparability. Three-dimensional data sets from healthy adult Merino sheep (Ovis orientalis aries, 12 ewes and 26 neutered rams) were acquired on a 1.5 T Philips MRI using a T1w sequence. Data were averaged by linear and non-linear registration algorithms. Moreover, animals were subjected to detailed brain volume analysis including examinations with respect to body weight (BW), age, and sex. The created T1w brain template provides an appropriate population-averaged ovine brain anatomy in a spatial standard coordinate system. Additionally, TPM for gray (GM) and white (WM) matter as well as cerebrospinal fluid (CSF) classification enabled automatic prior-based tissue segmentation using statistical parametric mapping (SPM). Overall, a positive correlation of GM volume and BW explained about 15% of the variance of GM while a positive correlation between WM and age was found. Absolute tissue volume differences were not detected, indeed ewes showed significantly more GM per bodyweight as compared to neutered rams. The created framework including spatial brain template and TPM represent a useful tool for unbiased automatic image preprocessing and morphological characterization in sheep. Therefore, the reported results may serve as a starting point for further experimental and/or translational research aiming at in vivo analysis in this species.
Resumo:
In this chapter a low-cost surgical navigation solution for periacetabular osteotomy (PAO) surgery is described. Two commercial inertial measurement units (IMU, Xsens Technologies, The Netherlands), are attached to a patient’s pelvis and to the acetabular fragment, respectively. Registration of the patient with a pre-operatively acquired computer model is done by recording the orientation of the patient’s anterior pelvic plane (APP) using one IMU. A custom-designed device is used to record the orientation of the APP in the reference coordinate system of the IMU. After registration, the two sensors are mounted to the patient’s pelvis and acetabular fragment, respectively. Once the initial position is recorded, the orientation is measured and displayed on a computer screen. A patient-specific computer model generated from a pre-operatively acquired computed tomography (CT) scan is used to visualize the updated orientation of the acetabular fragment. Experiments with plastic bones (7 hip joints) performed in an operating room comparing a previously developed optical navigation system with our inertial-based navigation system showed no statistical difference on the measurement of acetabular component reorientation (anteversion and inclination). In six out of seven hip joints the mean absolute difference was below five degrees for both anteversion and inclination.
Resumo:
INTRODUCTION In iliosacral screw fixation, the dimensions of solely intraosseous (secure) pathways, perpendicular to the ilio-sacral articulation (optimal) with corresponding entry (EP) and aiming points (AP) on lateral fluoroscopic projections, and the factors (demographic, anatomic) influencing these have not yet been described. METHODS In 100 CTs of normal pelvises, the height and width of the secure and optimal pathways were measured on axial and coronal views bilaterally (total measurements: n=200). Corresponding EP and AP were defined as either the location of the screw head or tip at the crossing of lateral innominate bones' cortices (EP) and sacral midlines (AP) within the centre of the pathway, respectively. EP and AP were transferred to the sagittal pelvic view using a coordinate system with the zero-point in the centre of the posterior cortex of the S1 vertebral body (x-axis parallel to upper S1 endplate). Distances are expressed in relation to the anteroposterior distance of the S1 upper endplate (in %). The influence of demographic (age, gender, side) and/or anatomic (PIA=pelvic incidence angle; TCA=transversal curvature angle, PID-Index=pelvic incidence distance-index; USW=unilateral sacral width-index) parameters on pathway dimensions and positions of EP and AP were assessed (multivariate analysis). RESULTS The width, height or both factors of the pathways were at least 7mm or more in 32% and 53% or 20%, respectively. The EP was on average 14±24% behind the centre of the posterior S1 cortex and 41±14% below it. The AP was on average 53±7% in the front of the centre of the posterior S1 cortex and 11±7% above it. PIA influenced the width, TCA, PID-Index the height of the pathways. PIA, PID-Index, and USW-Index significantly influenced EP and AP. Age, gender, and TCA significantly influenced EP. CONCLUSION Secure and optimal placement of screws of at least 7mm in diameter will be unfeasible in the majority of patients. Thoughtful preoperative planning of screw placement on CT scans is advisable to identify secure pathways with an optimal direction. For this purpose, the presented methodology of determining and transferring EPs and APs of corresponding pathways to the sagittal pelvic view using a coordinate system may be useful.
Resumo:
PURPOSE To evaluate a low-cost, inertial sensor-based surgical navigation solution for periacetabular osteotomy (PAO) surgery without the line-of-sight impediment. METHODS Two commercial inertial measurement units (IMU, Xsens Technologies, The Netherlands), are attached to a patient's pelvis and to the acetabular fragment, respectively. Registration of the patient with a pre-operatively acquired computer model is done by recording the orientation of the patient's anterior pelvic plane (APP) using one IMU. A custom-designed device is used to record the orientation of the APP in the reference coordinate system of the IMU. After registration, the two sensors are mounted to the patient's pelvis and acetabular fragment, respectively. Once the initial position is recorded, the orientation is measured and displayed on a computer screen. A patient-specific computer model generated from a pre-operatively acquired computed tomography scan is used to visualize the updated orientation of the acetabular fragment. RESULTS Experiments with plastic bones (eight hip joints) performed in an operating room comparing a previously developed optical navigation system with our inertial-based navigation system showed no statistically significant difference on the measurement of acetabular component reorientation. In all eight hip joints the mean absolute difference was below four degrees. CONCLUSION Using two commercially available inertial measurement units we show that it is possible to accurately measure the orientation (inclination and anteversion) of the acetabular fragment during PAO surgery and therefore to successfully eliminate the line-of-sight impediment that optical navigation systems have.