5 resultados para Cooperative groups
em BORIS: Bern Open Repository and Information System - Berna - Suiça
Resumo:
Background In cooperative breeders, subordinates generally help a dominant breeding pair to raise offspring. Parentage studies have shown that in several species subordinates can participate in reproduction. This suggests an important role of direct fitness benefits for cooperation, particularly where groups contain unrelated subordinates. In this situation parentage should influence levels of cooperation. Here we combine parentage analyses and detailed behavioural observations in the field to study whether in the highly social cichlid Neolamprologus pulcher subordinates participate in reproduction and if so, whether and how this affects their cooperative care, controlling for the effect of kinship. Methodology/Principal Findings We show that: (i) male subordinates gained paternity in 27.8% of all clutches and (ii) if they participated in reproduction, they sired on average 11.8% of young. Subordinate males sharing in reproduction showed more defence against experimentally presented egg predators compared to subordinates not participating in reproduction, and they tended to stay closer to the breeding shelter. No effects of relatedness between subordinates and dominants (to mid-parent, dominant female or dominant male) were detected on parentage and on helping behaviour. Conclusions/Significance This is the first evidence in a cooperatively breeding fish species that the helping effort of male subordinates may depend on obtained paternity, which stresses the need to consider direct fitness benefits in evolutionary studies of helping behaviour.
Resumo:
Background Recent work on the complexity of life highlights the roles played by evolutionary forces at different levels of individuality. One of the central puzzles in explaining transitions in individuality for entities ranging from complex cells, to multicellular organisms and societies, is how different autonomous units relinquish control over their functions to others in the group. In addition to the necessity of reducing conflict over effecting specialized tasks, differentiating groups must control the exploitation of the commons, or else be out-competed by more fit groups. Results We propose that two forms of conflict – access to resources within groups and representation in germ line – may be resolved in tandem through individual and group-level selective effects. Specifically, we employ an optimization model to show the conditions under which different within-group social behaviors (cooperators producing a public good or cheaters exploiting the public good) may be selected to disperse, thereby not affecting the commons and functioning as germ line. We find that partial or complete dispersal specialization of cheaters is a general outcome. The propensity for cheaters to disperse is highest with intermediate benefit:cost ratios of cooperative acts and with high relatedness. An examination of a range of real biological systems tends to support our theory, although additional study is required to provide robust tests. Conclusion We suggest that trait linkage between dispersal and cheating should be operative regardless of whether groups ever achieve higher levels of individuality, because individual selection will always tend to increase exploitation, and stronger group structure will tend to increase overall cooperation through kin selected benefits. Cheater specialization as dispersers offers simultaneous solutions to the evolution of cooperation in social groups and the origin of specialization of germ and soma in multicellular organisms.
Subordinate removal affects parental investment, but not offspring survival in a cooperative cichlid
Resumo:
Summary Subordinates in cooperative breeding systems may provide help to dominant pairs, who can benefit by either an increased total investment in their current brood or a reduced personal contribution to this investment. In the social cichlid Julidochromis ornatus, one large male subordinate generally spends 90% of his time in close proximity to the breeding shelter, whereas the dominants only spend 50% of their time close to the shelter. We experimentally removed the large subordinate for 30 days (approximating one breeding cycle) to study the investment strategies of dominants and the effects on offspring survival, while accounting for subordinate immigration. Experimental groups were compared with control groups, from which subordinates were also caught but not removed. On day one following removal, we tested whether dominants overcompensated, fully compensated or undercompensated for absence of the subordinate on several parental behaviours. Moreover, we tested whether the pairs' potential compensatory behaviour remained high seven days following large subordinate removal. One day following removal, dominants increased their time spent in the territory and their frequency of breeding shelter visits and defence, compared with the pre-removal phase and control groups. The dominant pair overcompensated for the loss of subordinate help in their breeding shelter visits, fully compensated in defence and undercompensated their time spent in the territory. Seven days after large subordinate removal, behavioural differences between treatments had disappeared. However, when distinguishing between groups with or without a new immigrant subordinate, dominant pairs only diminished investment in the presence of an immigrant, suggesting a compensatory role of the large subordinate. Finally, survival of juvenile group members was not affected by the treatment. Our experiments indicate that the presence of a large subordinate does not increase the dominant pairs' current reproductive success, but instead allows them to reduce their personal contribution to investment in the current brood. In addition, we illustrate that dominants may show strikingly different compensatory responses depending on the type of behaviour and emphasize the importance of immigrant subordinates to relieve dominants from costly compensatory responses in cooperative breeding systems.
Resumo:
Environmental factors can determine which group size will maximize the fitness of group members. This is particularly important in cooperative breeders, where group members often serve different purposes. Experimental studies are yet lacking to check whether ecologically mediated need for help will change the propensity of dominant group members to accept immigrants. Here, we manipulated the perceived risk of predation for dominant breeders of the cooperatively breeding cichlid fish Neolamprologus pulcher to test their response to unrelated and previously unknown immigrants. Potential immigrants were more readily accepted if groups were exposed to fish predators or egg predators than to herbivorous fish or control situations lacking predation risk. Our data are consistent with both risk dilution and helping effects. Egg predators were presented before spawning, which might suggest that the fish adjust acceptance rates also to a potential future threat. Dominant group members of N. pulcher apparently consider both present and future need of help based on ecological demand. This suggests that acceptance of immigrants and, more generally, tolerance of group members on demand could be a widespread response to ecological conditions in cooperatively breeding animals.