3 resultados para Control module

em BORIS: Bern Open Repository and Information System - Berna - Suiça


Relevância:

30.00% 30.00%

Publicador:

Resumo:

The present study was conducted to estimate the direct losses due to Neospora caninum in Swiss dairy cattle and to assess the costs and benefits of different potential control strategies. A Monte Carlo simulation spreadsheet module was developed to estimate the direct costs caused by N. caninum, with and without control strategies, and to estimate the costs of these control strategies in a financial analysis. The control strategies considered were "testing and culling of seropositive female cattle", "discontinued breeding with offspring from seropositive cows", "chemotherapeutical treatment of female offspring" and "vaccination of all female cattle". Each parameter in the module that was considered to be uncertain, was described using probability distributions. The simulations were run with 20,000 iterations over a time period of 25 years. The median annual losses due to N. caninum in the Swiss dairy cow population were estimated to be euro 9.7 million euros. All control strategies that required yearly serological testing of all cattle in the population produced high costs and thus were not financially profitable. Among the other control strategies, two showed benefit-cost ratios (BCR) >1 and positive net present values (NPV): "Discontinued breeding with offspring from seropositive cows" (BCR=1.29, NPV=25 million euros ) and "chemotherapeutical treatment of all female offspring" (BCR=2.95, NPV=59 million euros). In economic terms, the best control strategy currently available would therefore be "discontinued breeding with offspring from seropositive cows".

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Fibronectin type II (Fn2) module-containing proteins in the male genital tract are characterized by different numbers of Fn2 modules. Predominantly two classes exist which are distinct by having either two or four Fn2 modules. Minor variants with three Fn2 modules were also found in the human and the porcine epididymis. To reveal their relationship, mRNAs and proteins of representatives of these classes were studied in human, in Sus scrofa, and in rodents. Adult boars expressed members of both classes, i.e. ELSPBP1 and pB1, in subsequent regions of the epididymis, and both were under androgenic control. Human and rodent epididymides, on the other hand, alternatively contained only representatives of one of these two classes, i.e. ELSPBP1 in the human and two different pB1-related counterparts in rodents. ELSPBP1 and pB1-related genomic sequences were closely linked in chromosomal regions HSA 19q and SSC 6 q11-q21; conserved synteny between these regions is well established. On the other hand, in a syntenic region on mouse chromosome 7, ELSPBP1-related sequences were lacking. Tight binding to the sperm membrane via a choline-mediated mechanism was a common feature of the two classes of Fn2-module proteins, suggesting related function(s). However, differences in their regionalized expression patterns along the male genital tract as well as in association sites on the sperm surface suggested a species-specific sequential order in sperm binding.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Local mRNA translation in neurons has been mostly studied during axon guidance and synapse formation but not during initial neurite outgrowth. We performed a genome-wide screen for neurite-enriched mRNAs and identified an mRNA that encodes mitogen-activated protein kinase kinase 7 (MKK7), a MAP kinase kinase (MAPKK) for Jun kinase (JNK). We show that MKK7 mRNA localizes to the growth cone where it has the potential to be translated. MKK7 is then specifically phosphorylated in the neurite shaft, where it is part of a MAP kinase signaling module consisting of dual leucine zipper kinase (DLK), MKK7, and JNK1. This triggers Map1b phosphorylation to regulate microtubule bundling leading to neurite elongation. We propose a model in which MKK7 mRNA localization and translation in the growth cone allows for a mechanism to position JNK signaling in the neurite shaft and to specifically link it to regulation of microtubule bundling. At the same time, this uncouples activated JNK from its functions relevant to nuclear translocation and transcriptional activation.