110 resultados para Contractile Dysfunction
em BORIS: Bern Open Repository and Information System - Berna - Suiça
Resumo:
In failing hearts cardiomyocytes undergo alterations in cytoskeleton structure, contractility and viability. It is not known presently, how stress-induced changes of myofibrils correlate with markers for cell death and contractile function in cardiomyocytes. Therefore, we have studied the progression of contractile dysfunction, myofibrillar damage and cell death in cultured adult cardiomyocytes exposed to the cancer therapy doxorubicin. We demonstrate, that long-term cultured adult cardiomyocytes, a well-established model for the study of myofibrillar structure and effects of growth factors, can also be used to assess contractility and calcium handling. Adult rat ventricular myocytes (ARVM) were isolated and cultured for a total of 14 days in serum containing medium. The organization of calcium-handling proteins and myofibrillar structure in freshly isolated and in long-term cultured adult cardiomyocytes was studied by immunofluorescence and electron microscopy. Excitation contraction-coupling was analyzed by fura 2 and video edge detection in electrically paced cardiomyocytes forming a monolayer, and cell death and viability was measured by TUNEL assay, LDH release, MTT assay, and Western blot for LC3. Adult cardiomyocytes treated with Doxo showed apoptosis and necrosis only at supraclinical concentrations. Treated cells displayed merely alterations in cytoskeleton organization and integrity concomitant with contractile dysfunction and up-regulation of autophagosome formation, but no change in total sarcomeric protein content. We propose, that myofibrillar damage contributes to contractile dysfunction prior to cell death in adult cardiomyocytes exposed to clinically relevant concentrations of anthracyclines.
Resumo:
Aims Cardiac grafts from non-heartbeating donors (NHBDs) could significantly increase organ availability and reduce waiting-list mortality. Reluctance to exploit hearts from NHBDs arises from obligatory delays in procurement leading to periods of warm ischemia and possible subsequent contractile dysfunction. Means for early prediction of graft suitability prior to transplantation are thus required for development of heart transplantation programs with NHBDs. Methods and Results Hearts (n = 31) isolated from male Wistar rats were perfused with modified Krebs-Henseleit buffer aerobically for 20 min, followed by global, no-flow ischemia (32°C) for 30, 50, 55 or 60 min. Reperfusion was unloaded for 20 min, and then loaded, in working-mode, for 40 min. Left ventricular (LV) pressure was monitored using a micro-tip pressure catheter introduced via the mitral valve. Several hemodynamic parameters measured during early, unloaded reperfusion correlated significantly with LV work after 60 min reperfusion (p<0.001). Coronary flow and the production of lactate and lactate dehydrogenase (LDH) also correlated significantly with outcomes after 60 min reperfusion (p<0.05). Based on early reperfusion hemodynamic measures, a composite, weighted predictive parameter, incorporating heart rate (HR), developed pressure (DP) and end-diastolic pressure, was generated and evaluated against the HR-DP product after 60 min of reperfusion. Effective discriminating ability for this novel parameter was observed for four HR*DP cut-off values, particularly for ≥20 *103 mmHg*beats*min−1 (p<0.01). Conclusion Upon reperfusion of a NHBD heart, early evaluation, at the time of organ procurement, of cardiac hemodynamic parameters, as well as easily accessible markers of metabolism and necrosis seem to accurately predict subsequent contractile recovery and could thus potentially be of use in guiding the decision of accepting the ischemic heart for transplantation.
Resumo:
The clinical manifestations of anti-cancer drug associated cardiac side effects are diverse and can range from acutely induced cardiac arrhythmias to Q-T interval prolongation, changes in coronary vasomotion with consecutive myocardial ischemia, myocarditis, pericarditis, severe contractile dysfunction, and potentially fatal heart failure. The pathophysiology of these adverse effects is similarly heterogeneous and the identification of potential mechanisms is frequently difficult since the majority of cancer patients is not only treated with a multitude of cancer drugs but might also be exposed to potentially cardiotoxic radiation therapy. Some of the targets inhibited by new anti-cancer drugs also appear to be important for the maintenance of cellular homeostasis of normal tissue, in particular during exposure to cytotoxic chemotherapy. If acute chemotherapy-induced myocardial damage is only moderate, the process of myocardial remodeling can lead to progressive myocardial dysfunction over years and eventually induce myocardial dysfunction and heart failure. The tools for diagnosing anti-cancer drug associated cardiotoxicity and monitoring patients during chemotherapy include invasive and noninvasive techniques as well as laboratory investigations and are mostly only validated for anthracycline-induced cardiotoxicity and more recently for trastuzumab-associated cardiac dysfunction.
Resumo:
The aim of this analysis was to compare vasoreactive properties of internal thoracic arteries (ITA) grafts from diabetic (DM) to those of non-diabetic (ND) patients. Ring segments of ITA, taken from patients undergoing coronary artery bypass grafting, were suspended in organ bath chambers filled with modified Krebs-Henseleit solution and contractile responses to potassium chloride (KCl), noradrenaline (NA), endothelin-1 (ET-l), and endothelium-dependent relaxant responses to acetylcholine (ACH) were recorded isometrically. The receptor-mediated agonists NA and ET-1 stimulated ITA from both groups within similar concentration ranges while ITA from DM patients proved to be significantly more sensitive to KCl than ITA from ND. Furthermore, maximal contractile responses indicated that KCl (3.79 +/- 0.30 g, n = 7 in DM and 2.50 +/- 0.23 g, n = 29 in ND, P < 0.05) evoked significantly higher responses in ITA from DM as compared to the ND control group while both NA and ET-l stimulated ITA from both groups with similar efficacies. Endothelium-dependent relaxant responses to ACH proved to be similar in both groups when expressed as percentages of the pre-existing tone. The present data support the contention that in comparison to ND controls arteries from DM patients are more sensitive to depolarization but endothelial dysfunction is less frequent in human ITA than expected from observations in systemic vascular beds.
Resumo:
To test the hypothesis that muscle fibers are depolarized in patients with critical illness myopathy by measuring velocity recovery cycles (VRCs) of muscle action potentials.
Resumo:
Several studies have shown the presence of liver mitochondrial dysfunction during sepsis. TLR3 recognizes viral double-stranded RNA and host endogenous cellular mRNA released from damaged cells. TLR3 ligand amplifies the systemic hyperinflammatory response observed during sepsis and in sepsis RNA escaping from damaged tissues/cells may serve as an endogenous ligand for TLR3 thereby modulating immune responses. This study addressed the hypothesis that TLR3 might regulate mitochondrial function in cultured human hepatocytes. HepG2 cells were exposed to TLR-3 ligand (dsRNA--polyinosine-polycytidylic acid; Poly I:C) and mitochondrial respiration was measured. Poly I:C induced a reduction in maximal mitochondrial respiration of human hepatocytes which was prevented partially by preincubation with cyclosporine A (a mitochondrial permeability transition pore-opening inhibitor). Poly-I:C induced activation of NF-κB, and the mitochondrial dysfunction was accompanied by caspase-8 but not caspase-3 activation and by no major alterations in cellular or mitochondrial ultrastructure.
Resumo:
Myocardial dysfunction appears in 25% of patients with severe sepsis and in 50% of patients with septic shock, even in the presence of hyper dynamic states. It is characterized by a reduction in left ventricle ejection fraction, that reverts at the seventh to tenth day of evolution. Right ventricular dysfunction and diastolic left ventricular dysfunction can also appear. There is no consensus if an increase in end diastolic volume is part of the syndrome. High troponin or brain natriuretic peptide levels are associated with myocardial dysfunction and a higher mortality. The pathogenesis of myocardial dysfunction is related to micro and macro circulatory changes, inflammatory response, oxidative stress, intracellular calcium management disturbances, metabolic changes, autonomic dysfunction, activation of apoptosis, mitochondrial abnormalities and a derangement in catecholaminergic stimulation. Since there is no specific treatment for myocardial dysfunction, its management requires an adequate multi systemic support to maintain perfusion pressures and systemic flows sufficient for the regional and global demands.
Resumo:
BACKGROUND: While viral myocarditis and heart failure are recognized and feared complications of seasonal influenza A infection, only limited information is available for 2009 influenza A(H1N1)-induced heart failure. METHODS AND MAIN FINDINGS: This case series summarizes the disease course of four patients with 2009 influenza A(H1N1) infection who were treated at our institution from November 2009 until September 2010. All patients presented with severe cardiac dysfunction (acute heart failure, cardiogenic shock or cardiac arrest due to ventricular fibrillation) as the leading symptom of influenza A(H1N1) infection. Two patients most likely had pre-existent cardiac pathologies, and three required catecholamine therapy to maintain hemodynamic function. Except for one patient who died before influenza A(H1N1) infection had been diagnosed, all patients received antiviral therapy with oseltamivir and supportive critical care. Acute respiratory distress syndrome due to influenza A(H1N1) infection developed in one patient. Heart function normalized in two of the three surviving patients but remained impaired in the other one at hospital discharge. CONCLUSIONS: Influenza A(H1N1) infection may be associated with severe cardiac dysfunction which can even be the leading clinical symptom at presentation. During an influenza pandemic, a thorough history may reveal flu-like symptoms and should indicate testing for H1N1 infection also in critically ill patients with acute heart failure.
Resumo:
Adverse events in utero may predispose to cardiovascular disease in adulthood. The underlying mechanisms are unknown. During preeclampsia, vasculotoxic factors are released into the maternal circulation by the diseased placenta. We speculated that these factors pass the placental barrier and leave a defect in the circulation of the offspring that predisposes to a pathological response later in life. The hypoxia associated with high-altitude exposure is expected to facilitate the detection of this problem.
Resumo:
Reduced motor activity has been reported in schizophrenia and was associated with subtype, psychopathology and medication. Still, little is known about the neurobiology of motor retardation. To identify neural correlates of motor activity, resting state cerebral blood flow (CBF) was correlated with objective motor activity of the same day. Participants comprised 11 schizophrenia patients and 14 controls who underwent magnetic resonance imaging with arterial spin labeling and wrist actigraphy. Patients had reduced activity levels and reduced perfusion of the left parahippocampal gyrus, left middle temporal gyrus, right thalamus, and right prefrontal cortex. In controls, but not in schizophrenia, CBF was correlated with activity in the right thalamic ventral anterior (VA) nucleus, a key module within basal ganglia-cortical motor circuits. In contrast, only in schizophrenia patients positive correlations of CBF and motor activity were found in bilateral prefrontal areas and in the right rostral cingulate motor area (rCMA). Grey matter volume correlated with motor activity only in the left posterior cingulate cortex of the patients. The findings suggest that basal ganglia motor control is impaired in schizophrenia. In addition, CBF of cortical areas critical for motor control was associated with volitional motor behavior, which may be a compensatory mechanism for basal ganglia dysfunction.
Resumo:
Context Treatment of neurogenic lower urinary tract dysfunction (LUTD) is a challenge, because conventional therapies often fail. Sacral neuromodulation (SNM) has become a well-established therapy for refractory non-neurogenic LUTD, but its value in patients with a neurologic cause is unclear. Objective To assess the efficacy and safety of SNM for neurogenic LUTD. Evidence acquisition Studies were identified by electronic search of PubMed, EMBASE, and ScienceDirect (on 15 April 2010) and hand search of reference lists and review articles. SNM articles were included if they reported on efficacy and/or safety of tested and/or permanently implanted patients suffering from neurogenic LUTD. Two reviewers independently selected studies and extracted data. Study estimates were pooled using Bayesian random-effects meta-analysis. Evidence synthesis Of the 26 independent studies (357 patients) included, the evidence level ranged from 2b to 4 according to the Oxford Centre for Evidence-Based Medicine. Half (n = 13) of the included studies reported data on both test phase and permanent SNM; the remaining studies were confined to test phase (n = 4) or permanent SNM (n = 9). The pooled success rate was 68% for the test phase (95% credibility interval [CrI], 50–87) and 92% (95% CrI, 81–98%) for permanent SNM, with a mean follow-up of 26 mo. The pooled adverse event rate was 0% (95% CrI, 0–2%) for the test phase and 24% (95% CrI, 6–48%) for permanent SNM. Conclusions There is evidence indicating that SNM may be effective and safe for the treatment of patients with neurogenic LUTD. However, the number of investigated patients is low with high between-study heterogeneity, and there is a lack of randomised, controlled trials. Thus, well-designed, adequately powered studies are urgently needed before more widespread use of SNM for neurogenic LUTD can be recommended.
Resumo:
Endothelial dysfunction (ED) is frequently present in patients presenting with acute or stable coronary artery disease (CAD), but it is also found in patients presenting with chest pain without angiographic coronary lesions.
Resumo:
Episodic ataxia type 1 is a neuronal channelopathy caused by mutations in the KCNA1 gene encoding the fast K(+) channel subunit K(v)1.1. Episodic ataxia type 1 presents with brief episodes of cerebellar dysfunction and persistent neuromyotonia and is associated with an increased incidence of epilepsy. In myelinated peripheral nerve, K(v)1.1 is highly expressed in the juxtaparanodal axon, where potassium channels limit the depolarizing afterpotential and the effects of depolarizing currents. Axonal excitability studies were performed on patients with genetically confirmed episodic ataxia type 1 to characterize the effects of K(v)1.1 dysfunction on motor axons in vivo. The median nerve was stimulated at the wrist and compound muscle action potentials were recorded from abductor pollicis brevis. Threshold tracking techniques were used to record strength-duration time constant, threshold electrotonus, current/threshold relationship and the recovery cycle. Recordings from 20 patients from eight kindreds with different KCNA1 point mutations were compared with those from 30 normal controls. All 20 patients had a history of episodic ataxia and 19 had neuromyotonia. All patients had similar, distinctive abnormalities: superexcitability was on average 100% higher in the patients than in controls (P < 0.00001) and, in threshold electrotonus, the increase in excitability due to a depolarizing current (20% of threshold) was 31% higher (P < 0.00001). Using these two parameters, the patients with episodic ataxia type 1 and controls could be clearly separated into two non-overlapping groups. Differences between the different KCNA1 mutations were not statistically significant. Studies of nerve excitability can identify K(v)1.1 dysfunction in patients with episodic ataxia type 1. The simple 15 min test may be useful in diagnosis, since it can differentiate patients with episodic ataxia type 1 from normal controls with high sensitivity and specificity.