6 resultados para Contactless conductivity detection

em BORIS: Bern Open Repository and Information System - Berna - Suiça


Relevância:

100.00% 100.00%

Publicador:

Resumo:

A new approach for the determination of free and total valproic acid in small samples of 140 μL human plasma based on capillary electrophoresis with contactless conductivity detection is proposed. A dispersive liquid-liquid microextraction technique was employed in order to remove biological matrices prior to instrumental analysis. The free valproic acid was determined by isolating free valproic acid from protein-bound valproic acid by ultrafiltration under centrifugation of 100 μL sample. The filtrate was acidified to turn valproic acid into its protonated neutral form and then extracted. The determination of total valproic acid was carried out by acidifying 40 μL untreated plasma to release the protein-bound valproic acid prior to extraction. A solution consisting of 10 mM histidine, 10 mM 3-(N-morpholino)propanesulfonic acid and 10 μM hexadecyltrimethylammonium bromide of pH 6.5 was used as background electrolyte for the electrophoretic separation. The method showed good linearity in the range of 0.4-300 μg/mL with a correlation coefficient of 0.9996. The limit of detection was 0.08 μg/mL, and the reproducibility of the peak area was excellent (RSD=0.7-3.5%, n=3, for the concentration range from 1 to 150 μg/mL). The results for the free and total valproic acid concentration in human plasma were found to be comparable to those obtained with a standard immunoassay. The corresponding correlation coefficients were 0.9847 for free and 0.9521 for total valproic acid.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A capillary electrophoresis method with contactless conductivity detection was evaluated as a new approach for quantification of creatine and phosphocreatine in human quadriceps femoris biopsy samples. The running buffers employed consisted of 1 M acetic acid at a pH of 2.3 for the determination of creatine and 50 mM 3-(N-morpholino)propanesulfonic acid/30 mM histidine at a pH of 6.4 for the determination of phosphocreatine in the centrifuged muscle extracts. The limits of detection for creatine and phosphocreatine were found to be 2.5 and 1.0 μM, respectively. Creatine and phosphocreatine were determined in six human muscle biopsy samples and the results were found comparable to those of a standard enzymatic assay. The procedures developed for creatine and phosphocreatine also allow the determination of creatinine as well as adenosine diphosphate and adenosine triphosphate.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A CE system featuring an array of 16 contactless conductivity detectors was constructed. The detectors were arranged along 70 cm length of a capillary with 100 cm total length and allow the monitoring of separation processes. As the detectors cannot be accommodated on a conventional commercial instrument, a purpose built set-up employing a sequential injection manifold had to be employed for automation of the fluid handling. Conductivity measurements can be considered universal for electrophoresis and thus any changes in ionic composition can be monitored. The progress of the separation of Na(+) and K(+) is demonstrated. The potential of the system to the study of processes in CZE is shown in two examples. The first demonstrates the differences in the developments of peaks originating from a sample plug with a purely aqueous background to that of a plug containing the analyte ions in the buffer. The second example visualizes the opposite migration of cations and anions from a sample plug that had been placed in the middle of the capillary.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Application of pressure-driven laminar flow has an impact on zone and boundary dispersion in open tubular CE. The GENTRANS dynamic simulator for electrophoresis was extended with Taylor-Aris diffusivity which accounts for dispersion due to the parabolic flow profile associated with pressure-driven flow. Effective diffusivity of analyte and system zones as functions of the capillary diameter and the amount of flow in comparison to molecular diffusion alone were studied for configurations with concomitant action of imposed hydrodynamic flow and electroosmosis. For selected examples under realistic experimental conditions, simulation data are compared with those monitored experimentally using modular CE setups featuring both capacitively coupled contactless conductivity and UV absorbance detection along a 50 μm id fused-silica capillary of 90 cm total length. The data presented indicate that inclusion of flow profile based Taylor-Aris diffusivity provides realistic simulation data for analyte and system peaks, particularly those monitored in CE with conductivity detection.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Bidirectional ITP in fused-silica capillaries double-coated with Polybrene and poly-(vinylsulfonate) is a robust approach for analysis of low-molecular-mass compounds. EOF towards the cathode is strong (mobility >4.0 x 10(-8) m(2)/Vs) within the entire pH range investigated (2.40-8.08), dependent on ionic strength and buffer used and, at constant ionic strength, higher at alkaline pH. Electrokinetic separations and transport in such coated capillaries can be described with a dynamic computer model which permits the combined simulation of electrophoresis and electroosmosis in which the EOF is predicted either with a constant (i.e. pH- and ionic strength-independent) or a pH- and ionic strength-dependent electroosmotic mobility. Detector profiles predicted by computer simulation agree qualitatively well with bidirectional isotachopherograms that are monitored with a setup comprising two axial contactless conductivity detectors and a UV absorbance detector. The varying EOF predicted with a pH- and ionic strength-dependent electroosmotic mobility can be regarded as being realistic.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

When drilling ice cores deeper than ∼100 m, drill liquid is required to maintain ice-core quality and to limit borehole closure. Due to high-pressure air bubbles in the ice, the ice core can crack during drilling and core retrieval, typically at 600–1200 m depth in Greenland. Ice from this 'brittle zone' can be contaminated by drill liquid as it seeps through cracks into the core. Continuous flow analysis (CFA) systems are routinely used to analyse ice for chemical impurities, so the detection of drill liquid is important for validating accurate measurements and avoiding potential instrument damage. An optical detector was constructed to identify drill liquid in CFA tubing by ultraviolet absorption spectroscopy at a wavelength of 290 nm. The set-up was successfully field-tested in the frame of the NEEM ice-core drilling project in Greenland. A total of 27 cases of drill liquid contamination were identified during the analysis of 175 m of brittle zone ice. The analyses most strongly affected by drill liquid contamination include insoluble dust particles, electrolytic conductivity, ammonium, hydrogen peroxide and sulphate. This method may also be applied to other types of drill liquid used at other drill sites.