41 resultados para Constitutional autonomy

em BORIS: Bern Open Repository and Information System - Berna - Suiça


Relevância:

20.00% 20.00%

Publicador:

Relevância:

20.00% 20.00%

Publicador:

Resumo:

PURPOSE: The aim of this study was to evaluate the feasibility of applying a previously described dose strategy based on (99m)Tc-pertechnetate thyroid uptake under thyrotropin suppression (TcTU(s)) to radioiodine therapy for unifocal thyroid autonomy. METHODS: A total of 425 consecutive patients (302 females, 123 males; age 63.1+/-10.3 years) with unifocal thyroid autonomy were treated at three different centres with (131)I, using Marinelli's formula for calculation of three different absorbed dose schedules: 100-300 Gy to the total thyroid volume according to the pre-treatment TcTU(s) (n=146), 300 Gy to the nodule volume (n=137) and 400 Gy to the nodule volume (n=142). RESULTS: Successful elimination of functional thyroid autonomy with either euthyroidism or hypothyroidism occurred at a mean of 12 months after radioiodine therapy in 94.5% of patients receiving 100-300 Gy to the thyroid volume, in 89.8% of patients receiving 300 Gy to the nodule volume and in 94.4% receiving 400 Gy to the nodule volume. Reduction in thyroid volume was highest for the 100-300 Gy per thyroid and 400 Gy per nodule strategies (36+/-19% and 38+/-20%, respectively) and significantly lower for the 300 Gy per nodule strategy (28+/-16%; p<0.01). CONCLUSION: A dose strategy based on the TcTU(s) can be used independently of the scintigraphic pattern of functional autonomous tissue in the thyroid.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

BACKGROUND: Microarray genome analysis is realising its promise for improving detection of genetic abnormalities in individuals with mental retardation and congenital abnormality. Copy number variations (CNVs) are now readily detectable using a variety of platforms and a major challenge is the distinction of pathogenic from ubiquitous, benign polymorphic CNVs. The aim of this study was to investigate replacement of time consuming, locus specific testing for specific microdeletion and microduplication syndromes with microarray analysis, which theoretically should detect all known syndromes with CNV aetiologies as well as new ones. METHODS: Genome wide copy number analysis was performed on 117 patients using Affymetrix 250K microarrays. RESULTS: 434 CNVs (195 losses and 239 gains) were found, including 18 pathogenic CNVs and 9 identified as "potentially pathogenic". Almost all pathogenic CNVs were larger than 500 kb, significantly larger than the median size of all CNVs detected. Segmental regions of loss of heterozygosity larger than 5 Mb were found in 5 patients. CONCLUSIONS: Genome microarray analysis has improved diagnostic success in this group of patients. Several examples of recently discovered "new syndromes" were found suggesting they are more common than previously suspected and collectively are likely to be a major cause of mental retardation. The findings have several implications for clinical practice. The study revealed the potential to make genetic diagnoses that were not evident in the clinical presentation, with implications for pretest counselling and the consent process. The importance of contributing novel CNVs to high quality databases for genotype-phenotype analysis and review of guidelines for selection of individuals for microarray analysis is emphasised.