50 resultados para Cones. Dopamine. Eye. Ganglion cells. Rods. vision
em BORIS: Bern Open Repository and Information System - Berna - Suiça
Resumo:
It is increasingly recognised that chronically activated glia contribute to the pathology of various neurodegenerative diseases, including glaucoma. One means by which this can occur is through the release of neurotoxic, proinflammatory factors. In the current study, we therefore investigated the spatio-temporal patterns of expression of three such cytokines, IL-1β, TNFα and IL-6, in a validated rat model of experimental glaucoma. First, only weak evidence was found for increased expression of IL-1β and TNFα following induction of ocular hypertension. Second, and much more striking, was that robust evidence was uncovered showing IL-6 to be synthesised by injured retinal ganglion cells following elevation of intraocular pressure and transported in an orthograde fashion along the nerve, accumulating at sites of axonal disruption in the optic nerve head. Verification that IL-6 represents a novel marker of disrupted axonal transport in this model was obtained by performing double labelling immunofluorescence with recognised markers of fast axonal transport. The stimulus for IL-6 synthesis and axonal transport during experimental glaucoma arose from axonal injury rather than ocular hypertension, as the response was identical after optic nerve crush and bilateral occlusion of the carotid arteries, each of which is independent of elevated intraocular pressure. Moreover, the response of IL-6 was not a generalised feature of the gp130 family of cytokines, as it was not mimicked by another family member, ciliary neurotrophic factor. Finally, further study suggested that IL-6 may be an early part of the endogenous regenerative response as the cytokine colocalised with growth-associated membrane phosphoprotein-43 in some putative regenerating axons, and potently stimulated neuritogenesis in retinal ganglion cells in culture, an effect that was additive to that of ciliary neurotrophic factor. These data comprise clear evidence that IL-6 is actively involved in the attempt of injured retinal ganglion cells to regenerate their axons.
Resumo:
New-onset impairment of ocular motility will cause incomitant strabismus, i.e., a gaze-dependent ocular misalignment. This ocular misalignment will cause retinal disparity, that is, a deviation of the spatial position of an image on the retina of both eyes, which is a trigger for a vergence eye movement that results in ocular realignment. If the vergence movement fails, the eyes remain misaligned, resulting in double vision. Adaptive processes to such incomitant vergence stimuli are poorly understood. In this study, we have investigated the physiological oculomotor response of saccadic and vergence eye movements in healthy individuals after shifting gaze from a viewing position without image disparity into a field of view with increased image disparity, thus in conditions mimicking incomitance. Repetitive saccadic eye movements into a visual field with increased stimulus disparity lead to a rapid modification of the oculomotor response: (a) Saccades showed immediate disconjugacy (p < 0.001) resulting in decreased retinal image disparity at the end of a saccade. (b) Vergence kinetics improved over time (p < 0.001). This modified oculomotor response enables a more prompt restoration of ocular alignment in new-onset incomitance.
Resumo:
PURPOSE Recent advances in optogenetics and gene therapy have led to promising new treatment strategies for blindness caused by retinal photoreceptor loss. Preclinical studies often rely on the retinal degeneration 1 (rd1 or Pde6b(rd1)) retinitis pigmentosa (RP) mouse model. The rd1 founder mutation is present in more than 100 actively used mouse lines. Since secondary genetic traits are well-known to modify the phenotypic progression of photoreceptor degeneration in animal models and human patients with RP, negligence of the genetic background in the rd1 mouse model is unwarranted. Moreover, the success of various potential therapies, including optogenetic gene therapy and prosthetic implants, depends on the progress of retinal degeneration, which might differ between rd1 mice. To examine the prospect of phenotypic expressivity in the rd1 mouse model, we compared the progress of retinal degeneration in two common rd1 lines, C3H/HeOu and FVB/N. METHODS We followed retinal degeneration over 24 weeks in FVB/N, C3H/HeOu, and congenic Pde6b(+) seeing mouse lines, using a range of experimental techniques including extracellular recordings from retinal ganglion cells, PCR quantification of cone opsin and Pde6b transcripts, in vivo flash electroretinogram (ERG), and behavioral optokinetic reflex (OKR) recordings. RESULTS We demonstrated a substantial difference in the speed of retinal degeneration and accompanying loss of visual function between the two rd1 lines. Photoreceptor degeneration and loss of vision were faster with an earlier onset in the FVB/N mice compared to C3H/HeOu mice, whereas the performance of the Pde6b(+) mice did not differ significantly in any of the tests. By postnatal week 4, the FVB/N mice expressed significantly less cone opsin and Pde6b mRNA and had neither ERG nor OKR responses. At 12 weeks of age, the retinal ganglion cells of the FVB/N mice had lost all light responses. In contrast, 4-week-old C3H/HeOu mice still had ERG and OKR responses, and we still recorded light responses from C3H/HeOu retinal ganglion cells until the age of 24 weeks. These results show that genetic background plays an important role in the rd1 mouse pathology. CONCLUSIONS Analogous to human RP, the mouse genetic background strongly influences the rd1 phenotype. Thus, different rd1 mouse lines may follow different timelines of retinal degeneration, making exact knowledge of genetic background imperative in all studies that use rd1 models.
Resumo:
Introduction: In team sports the ability to use peripheral vision is essential to track a number of players and the ball. By using eye-tracking devices it was found that players either use fixations and saccades to process information on the pitch or use smooth pursuit eye movements (SPEM) to keep track of single objects (Schütz, Braun, & Gegenfurtner, 2011). However, it is assumed that peripheral vision can be used best when the gaze is stable while it is unknown whether motion changes can be equally well detected when SPEM are used especially because contrast sensitivity is reduced during SPEM (Schütz, Delipetkose, Braun, Kerzel, & Gegenfurtner, 2007). Therefore, peripheral motion change detection will be examined by contrasting a fixation condition with a SPEM condition. Methods: 13 participants (7 male, 6 female) were presented with a visual display consisting of 15 white and 1 red square. Participants were instructed to follow the red square with their eyes and press a button as soon as a white square begins to move. White square movements occurred either when the red square was still (fixation condition) or moving in a circular manner with 6 °/s (pursuit condition). The to-be-detected white square movements varied in eccentricity (4 °, 8 °, 16 °) and speed (1 °/s, 2 °/s, 4 °/s) while movement time of white squares was constant at 500 ms. 180 events should be detected in total. A Vicon-integrated eye-tracking system and a button press (1000 Hz) was used to control for eye-movements and measure detection rates and response times. Response times (ms) and missed detections (%) were measured as dependent variables and analysed with a 2 (manipulation) x 3 (eccentricity) x 3 (speed) ANOVA with repeated measures on all factors. Results: Significant response time effects were found for manipulation, F(1,12) = 224.31, p < .01, ηp2 = .95, eccentricity, F(2,24) = 56.43; p < .01, ηp2 = .83, and the interaction between the two factors, F(2,24) = 64.43; p < .01, ηp2 = .84. Response times increased as a function of eccentricity for SPEM only and were overall higher than in the fixation condition. Results further showed missed events effects for manipulation, F(1,12) = 37.14; p < .01, ηp2 = .76, eccentricity, F(2,24) = 44.90; p < .01, ηp2 = .79, the interaction between the two factors, F(2,24) = 39.52; p < .01, ηp2 = .77 and the three-way interaction manipulation x eccentricity x speed, F(2,24) = 3.01; p = .03, ηp2 = .20. While less than 2% of events were missed on average in the fixation condition as well as at 4° and 8° eccentricity in the SPEM condition, missed events increased for SPEM at 16 ° eccentricity with significantly more missed events in the 4 °/s speed condition (1 °/s: M = 34.69, SD = 20.52; 2 °/s: M = 33.34, SD = 19.40; 4 °/s: M = 39.67, SD = 19.40). Discussion: It could be shown that using SPEM impairs the ability to detect peripheral motion changes at the far periphery and that fixations not only help to detect these motion changes but also to respond faster. Due to high temporal constraints especially in team sports like soccer or basketball, fast reaction are necessary for successful anticipation and decision making. Thus, it is advised to anchor gaze at a specific location if peripheral changes (e.g. movements of other players) that require a motor response have to be detected. In contrast, SPEM should only be used if a single object, like the ball in cricket or baseball, is necessary for a successful motor response. References: Schütz, A. C., Braun, D. I., & Gegenfurtner, K. R. (2011). Eye movements and perception: A selective review. Journal of Vision, 11, 1-30. Schütz, A. C., Delipetkose, E., Braun, D. I., Kerzel, D., & Gegenfurtner, K. R. (2007). Temporal contrast sensitivity during smooth pursuit eye movements. Journal of Vision, 7, 1-15.
Resumo:
INTRODUCTION Optic neuritis leads to degeneration of retinal ganglion cells whose axons form the optic nerve. The standard treatment is a methylprednisolone pulse therapy. This treatment slightly shortens the time of recovery but does not prevent neurodegeneration and persistent visual impairment. In a phase II trial performed in preparation of this study, we have shown that erythropoietin protects global retinal nerve fibre layer thickness (RNFLT-G) in acute optic neuritis; however, the preparatory trial was not powered to show effects on visual function. METHODS AND ANALYSIS Treatment of Optic Neuritis with Erythropoietin (TONE) is a national, randomised, double-blind, placebo-controlled, multicentre trial with two parallel arms. The primary objective is to determine the efficacy of erythropoietin compared to placebo given add-on to methylprednisolone as assessed by measurements of RNFLT-G and low-contrast visual acuity in the affected eye 6 months after randomisation. Inclusion criteria are a first episode of optic neuritis with decreased visual acuity to ≤0.5 (decimal system) and an onset of symptoms within 10 days prior to inclusion. The most important exclusion criteria are history of optic neuritis or multiple sclerosis or any ocular disease (affected or non-affected eye), significant hyperopia, myopia or astigmatism, elevated blood pressure, thrombotic events or malignancy. After randomisation, patients either receive 33 000 international units human recombinant erythropoietin intravenously for 3 consecutive days or placebo (0.9% saline) administered intravenously. With an estimated power of 80%, the calculated sample size is 100 patients. The trial started in September 2014 with a planned recruitment period of 30 months. ETHICS AND DISSEMINATION TONE has been approved by the Central Ethics Commission in Freiburg (194/14) and the German Federal Institute for Drugs and Medical Devices (61-3910-4039831). It complies with the Declaration of Helsinki, local laws and ICH-GCP. TRIAL REGISTRATION NUMBER NCT01962571.
Resumo:
Fabry's disease corresponds to an inherited disorder transmitted by an X-linked recessive gene. It generates a dysfunction of glycosphingolipid metabolism due to an enzymatic deficiency of alpha-galactosidase activity, resulting in glycosphingolipid deposits in all areas of the body. The clinical (heart, kidney, and central nervous system) manifestations are more severe in hemizygous boys than in heterozygous girls. They appear during childhood or adolescence: acroparesthesia, joint pain, angiokeratoma, corneal dystrophy, hypohydrosis or anhydrosis, and renal failure. The otoneurologic symptoms consist of hearing fluctuation, progressive unilateral or bilateral hearing loss, and episodes of vertigo or dizziness. Otoneurologic findings in 12 of 26 members of the same family are presented: the mother and 9 of her 12 children, as well as 2 of her 14 grandchildren: 4 healthy persons, 4 heterozygous female carriers, and 4 hemizygous male patients. Three of the male patients had fluctuation of hearing, sudden hearing loss, and episodes of vertigo and dizziness. The otoneurologic examinations showed a bilateral cochleovestibular deficit (n = 1), a right cochleovestibular deficit (n = 1), and a bilateral hearing loss combined with a right vestibular deficit (n = 1). Histopathologic evidence of glycosphingolipid accumulation in vascular endothelial and ganglion cells, as well as atrophy of the stria and spiral ligament, might explain the otoneurologic symptoms and findings.
Resumo:
BACKGROUND: Hirschsprung disease (HD) is a functional obstruction of the bowel caused by the absence of intrinsic enteric ganglion cells. The diagnosis of total colonic HD (TCHD) based on contrast enemas is difficult in newborns because radiological findings vary. OBJECTIVE: To evaluate the radiographic and contrast enema findings in patients with pathologically proven TCHD. MATERIALS AND METHODS: From 1966 to 2007, 17 records from a total of 31 patients with TCHD were retrospectively evaluated for diameter and shape of the colon, diameter of the small bowel, bowel wall contour, ileal reflux, abdominal calcifications, pneumoperitoneum, filling defects, transitional zones and rectosigmoid index. RESULTS: Three colonic patterns of TCHD were found: microcolon, question-mark-shape colon and normal caliber colon. Additional findings included spasmodic colon, ileal reflux, delayed evacuation and abdominal calcifications. Colonic transitional zones were found in eight patients with TCHD. CONCLUSION: The diagnosis of TCHD is difficult to establish by contrast enema studies. The length of the aganglionic small bowel and the age of the patient can influence the radiological findings in TCHD. The transitional zone and the rectosigmoid index can be false-positive in TCHD. The colon can appear normal. Consider TCHD if the contrast enema study is normal but the patient remains symptomatic and other causes of distal bowel obstruction have been excluded.
Resumo:
The adenosine A2a receptors (A2aR) play an important role in the purinergic mediated neuromodulation. The presence of A2aR in the brain is well established. In contrast, little is known about their expression in the periphery. The purpose of this study was to investigate the expression of A2aR gene in the autonomic (otic, sphenopalatine, ciliary, cervical superior ganglia and carotid body) and in the dorsal root ganglia of normal rat. Hybridization histochemistry with S35-labelled radioactive oligonucleotide probes was used. An expression of A2aR gene was found in the large neuronal cells of the rat dorsal root ganglia. The satellite cells showed no expression of A2aR gene. In the superior cervical ganglion, isolated ganglion cells expressed A2aR. In the carotid body clusters of cells with a strong A2aR gene expression were found. In contrast, the ciliary and otic ganglia did not expressed A2aR gene, and only few small sized A2aR expressing cells were demonstrated in the sphenopalatine ganglion. The discrete distribution of A2aR gene expression in the peripheral nervous system speaks for a role of this receptor in the purinergic modulation of sensory information as well as in the sympathetic nervous system.
Resumo:
Parylenes are poly(p-xylylene) polymers that are widely used as moisture barriers and in biomedicine because of their good biocompatibility. We have investigated MeV ion beam lithography using 16O+ ions for writing defined patterns in Parylene-C, which is evaluated as a coating material for the Cochlear Implant (CI) electrode array, a neuroprosthesis to treat some forms of deafness. Parylene-C and -F on silicon and glass substrates as well as 50 μm thick PTFE were irradiated to different fluences (1×1013-1×10161×1013-1×1016 1 MeV 16O+ ions cm−2) through aperture masks under high vacuum and a low pressure (<10−3 mbar) oxygen atmosphere. Biocompatibility of the irradiated and unirradiated surfaces was tested by cell-counting to determine the proliferation of murine spiral ganglion cells. The results reveal that an oxygen ion beam can be used to pattern Parylene-C and -F without using a liquid solvent developer in a similar manner to PTFE but with a ∼25× smaller removal rate. Biocompatibility tests showed no difference in cell adhesion between irradiated and unirradiated areas or ion fluence dependence. Coating the Parylene surface with an adhesion-promoting protein mixture had a much greater effect on cell proliferation.
Resumo:
BACKGROUND: Stem cells with the ability to form clonal floating colonies (spheres) were recently isolated from the neonatal murine spiral ganglion. To further examine the features of inner ear-derived neural stem cells and their derivatives, we investigated the effects of leukemia inhibitory factor (LIF), a neurokine that has been shown to promote self-renewal of other neural stem cells and to affect neural and glial cell differentiation. RESULTS: LIF-treatment led to a dose-dependent increase of the number of neurons and glial cells in cultures of sphere-derived cells. Based on the detection of developmental and progenitor cell markers that are maintained in LIF-treated cultures and the increase of cycling nestin-positive progenitors, we propose that LIF maintains a pool of neural progenitor cells. We further provide evidence that LIF increases the number of nestin-positive progenitor cells directly in a cell cycle-independent fashion, which we interpret as an acceleration of neurogenesis in sphere-derived progenitors. This effect is further enhanced by an anti-apoptotic action of LIF. Finally, LIF and the neurotrophins BDNF and NT3 additively promote survival of stem cell-derived neurons. CONCLUSION: Our results implicate LIF as a powerful tool to control neural differentiation and maintenance of stem cell-derived murine spiral ganglion neuron precursors. This finding could be relevant in cell replacement studies with animal models featuring spiral ganglion neuron degeneration. The additive effect of the combination of LIF and BDNF/NT3 on stem cell-derived neuronal survival is similar to their effect on primary spiral ganglion neurons, which puts forward spiral ganglion-derived neurospheres as an in vitro model system to study aspects of auditory neuron development.