19 resultados para Concentric contraction
em BORIS: Bern Open Repository and Information System - Berna - Suiça
Resumo:
Distal oesophageal spasm is a rare and under-investigated motility abnormality. Recent studies indicate effective bolus transit in varying percentages of distal oesophageal spasm patients.
Resumo:
Low-intensity concentric (CET) and eccentric (EET) endurance-type training induce specific structural adaptations in skeletal muscle. We evaluated to which extent steady-state adaptations in transcript levels are involved in the compensatory alterations of muscle mitochondria and myofibrils with CET versus EET at a matched metabolic exercise intensity of medicated, stable coronary patients (CAD). Biopsies were obtained from vastus lateralis muscle before and after 8 weeks of CET (n=6) or EET (n=6). Transcript levels for factors involved in mitochondrial biogenesis (PGC-1alpha, Tfam), mitochondrial function (COX-1, COX-4), control of contractile phenotype (MyHC I, IIa, IIx) as well as mechanical stress marker (IGF-I) were quantified using an reverse-transcriptase polymerase chain reaction approach. After 8 weeks of EET, a reduction of the COX-4 mRNA level by 41% and a tendency for a drop in Tfam transcript concentration (-33%, P=0.06) was noted. This down-regulation corresponded to a drop in total mitochondrial volume density. MyHC-IIa transcript levels were specifically decreased after EET, and MyHC-I mRNA showed a trend towards a reduction (P=0.08). Total fiber cross-sectional area was not altered. After CET and EET, the IGF-I mRNA level was significantly increased. The PGC-1alpha significantly correlated with Tfam, and both PGC-1alpha and Tfam significantly correlated with COX-1 and COX-4 mRNAs. Post-hoc analysis identified significant interactions between the concurrent medication and muscular transcript levels as well as fiber size. Our findings support the concept that specific transcriptional adaptations mediate the divergent mitochondrial response of muscle cells to endurance training under different load condition and indicate a mismatch of processes related to muscle hypertrophy in medicated CAD patients.
Resumo:
Treatment of metastatic breast cancer with doxorubicin (Doxo) in combination with trastuzumab, an antibody targeting the ErbB2 receptor, results in an increased incidence of heart failure. Doxo therapy induces reactive oxygen species (ROS) and alterations of calcium homeostasis. Therefore, we hypothesized that neuregulin-1 beta (NRG), a ligand of the cardiac ErbB receptors, reduces Doxo-induced alterations of EC coupling by triggering antioxidant mechanisms. Adult rat ventricular cardiomyocytes (ARVM) were isolated and treated for 18-48 h. SERCA protein was analyzed by Western blot, EC coupling parameters by fura-2 and video edge detection, gene expression by RT-PCR, and ROS by DCF-fluorescence microscopy. At clinically relevant doses Doxo reduced cardiomyocytes contractility, SERCA protein and SR calcium content. NRG, similarly as the antioxidant N-acetylcystein (NAC), did not affect EC coupling alone, but protected against Doxo-induced damage. NRG and Doxo showed an opposite modulation of glutathione reductase gene expression. NRG, similarly as NAC, reduced peroxide- or Doxo-induced oxidative stress. Specific inhibitors showed, that the antioxidant action of NRG depended on signaling via the ErbB2 receptor and on the Akt- and not on the MAPK-pathway. Therefore, NRG attenuates Doxo-induced alterations of EC coupling and reduces oxidative stress in ARVM. Inhibition of the ErbB2/NRG signaling pathway by trastuzumab in patients concomitantly treated with Doxo might prevent beneficial effects of NRG in the myocardium.
Resumo:
OBJECTIVE: To determine differences between hypermobile subjects and controls in terms of maximum strength, rate of force development, and balance. METHODS: We recruited 13 subjects with hypermobility and 18 controls. Rate of force development and maximal voluntary contraction (MVC) during single leg knee extension of the right knee were measured isometrically for each subject. Balance was tested twice on a force plate with 15-second single-leg stands on the right leg. Rate of force development (N/second) and MVC (N) were extracted from the force-time curve as maximal rate of force development (= limit Deltaforce/Deltatime) and the absolute maximal value, respectively. RESULTS: The hypermobile subjects showed a significantly higher value for rate of force development (15.2% higher; P = 0.038, P = 0.453, epsilon = 0.693) and rate of force development related to body weight (16.4% higher; P = 0.018, P = 0.601, epsilon = 0.834) than the controls. The groups did not differ significantly in MVC (P = 0.767, P = 0.136, epsilon = 0.065), and MVC related to body weight varied randomly between the groups (P = 0.921, P = 0.050, epsilon = 0.000). In balance testing, the mediolateral sway of the hypermobile subjects showed significantly higher values (11.6% higher; P = 0.034, P = 0.050, epsilon = 0.000) than that of controls, but there was no significant difference (4.9% difference; P = 0.953, P = 0.050, epsilon = 0.000) in anteroposterior sway between the 2 groups. CONCLUSION: Hypermobile women without acute symptoms or limitations in activities of daily life have a higher rate of force development in the knee extensors and a higher mediolateral sway than controls with normal joint mobility.
Resumo:
Sarcopenia is the age-related loss of muscle mass and strength and has been associated with an increased risk of falling and the development of metabolic diseases. Various training protocols, nutritional and hormonal interventions have been proposed to prevent sarcopenia. This study explores the potential of continuous eccentric exercise to retard age-related loss of muscle mass and function. Elderly men and women (80.6 +/- 3.5 years) were randomized to one of three training interventions demanding a training effort of two sessions weekly for 12 weeks: cognitive training (CT; n = 16), conventional resistance training (RET; n = 23) and eccentric ergometer training (EET; n = 23). Subjects were tested for functional parameters and body composition. Biopsies were collected from M. vastus lateralis before and after the intervention for the assessment of fiber size and composition. Maximal isometric leg extension strength (MEL: +8.4 +/- 1.7%) and eccentric muscle coordination (COORD: -43 +/- 4%) were significantly improved with EET but not with RET (MEL: +2.3 +/- 2.0%; COORD: -13 +/- 3%) and CT (MEL: -2.3 +/- 2.5%; COORD: -12 +/- 5%), respectively. We observed a loss of body fat (-5.0 +/- 1.1%) and thigh fat (-6.9 +/- 1.5%) in EET subjects only. Relative thigh lean mass increased with EET (+2.5 +/- 0.6%) and RET (+2.0 +/- 0.3%) and correlated negatively with type IIX/type II muscle fiber ratios. It was concluded that both RET and EET are beneficial for the elderly with regard to muscle functional and structural improvements but differ in their spectrum of effects. A training frequency of only two sessions per week seems to be the lower limit for a training stimulus to reveal measurable benefits.