368 resultados para Computer integrated manufacturing systems

em BORIS: Bern Open Repository and Information System - Berna - Suiça


Relevância:

100.00% 100.00%

Publicador:

Resumo:

SUMMARY The aim of this study was to evaluate the influence of surface roughness on surface hardness (Vickers; VHN), elastic modulus (EM), and flexural strength (FLS) of two computer-aided design/computer-aided manufacturing (CAD/CAM) ceramic materials. One hundred sixty-two samples of VITABLOCS Mark II (VMII) and 162 samples of IPS Empress CAD (IPS) were ground according to six standardized protocols producing decreasing surface roughnesses (n=27/group): grinding with 1) silicon carbide (SiC) paper #80, 2) SiC paper #120, 3) SiC paper #220, 4) SiC paper #320, 5) SiC paper #500, and 6) SiC paper #1000. Surface roughness (Ra/Rz) was measured with a surface roughness meter, VHN and EM with a hardness indentation device, and FLS with a three-point bending test. To test for a correlation between surface roughness (Ra/Rz) and VHN, EM, or FLS, Spearman rank correlation coefficients were calculated. The decrease in surface roughness led to an increase in VHN from (VMII/IPS; medians) 263.7/256.5 VHN to 646.8/601.5 VHN, an increase in EM from 45.4/41.0 GPa to 66.8/58.4 GPa, and an increase in FLS from 49.5/44.3 MPa to 73.0/97.2 MPa. For both ceramic materials, Spearman rank correlation coefficients showed a strong negative correlation between surface roughness (Ra/Rz) and VHN or EM and a moderate negative correlation between Ra/Rz and FLS. In conclusion, a decrease in surface roughness generally improved the mechanical properties of the CAD/CAM ceramic materials tested. However, FLS was less influenced by surface roughness than expected.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

OBJECTIVES Optical scanners combined with computer-aided design and computer-aided manufacturing (CAD/CAM) technology provide high accuracy in the fabrication of titanium (TIT) and zirconium dioxide (ZrO) bars. The aim of this study was to compare the precision of fit of CAD/CAM TIT bars produced with a photogrammetric and a laser scanner. METHODS Twenty rigid CAD/CAM bars were fabricated on one single edentulous master cast with 6 implants in the positions of the second premolars, canines and central incisors. A photogrammetric scanner (P) provided digitized data for TIT-P (n=5) while a laser scanner (L) was used for TIT-L (n=5). The control groups consisted of soldered gold bars (gold, n=5) and ZrO-P with similar bar design. Median vertical distance between implant and bar platforms from non-tightened implants (one-screw test) was calculated from mesial, buccal and distal scanning electron microscope measurements. RESULTS Vertical microgaps were not significantly different between TIT-P (median 16μm; 95% CI 10-27μm) and TIT-L (25μm; 13-32μm). Gold (49μm; 12-69μm) had higher values than TIT-P (p=0.001) and TIT-L (p=0.008), while ZrO-P (35μm; 17-55μm) exhibited higher values than TIT-P (p=0.023). Misfit values increased in all groups from implant position 23 (3 units) to 15 (10 units), while in gold and TIT-P values decreased from implant 11 toward the most distal implant 15. SIGNIFICANCE CAD/CAM titanium bars showed high precision of fit using photogrammetric and laser scanners. In comparison, the misfit of ZrO bars (CAM/CAM, photogrammetric scanner) and soldered gold bars was statistically higher but values were clinically acceptable.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Image-based modeling of tumor growth combines methods from cancer simulation and medical imaging. In this context, we present a novel approach to adapt a healthy brain atlas to MR images of tumor patients. In order to establish correspondence between a healthy atlas and a pathologic patient image, tumor growth modeling in combination with registration algorithms is employed. In a first step, the tumor is grown in the atlas based on a new multi-scale, multi-physics model including growth simulation from the cellular level up to the biomechanical level, accounting for cell proliferation and tissue deformations. Large-scale deformations are handled with an Eulerian approach for finite element computations, which can operate directly on the image voxel mesh. Subsequently, dense correspondence between the modified atlas and patient image is established using nonrigid registration. The method offers opportunities in atlasbased segmentation of tumor-bearing brain images as well as for improved patient-specific simulation and prognosis of tumor progression.

Relevância:

100.00% 100.00%

Publicador:

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Using navigation systems in general orthopaedic surgery and, in particular, knee replacement is becoming more and more accepted. This paper describes the basic technological concepts of modern computer assisted surgical systems. It explains the variation in currently available systems and outlines research activities that will potentially influence future products. In general, each navigation system is defined by three components: (1) the therapeutic object is the anatomical structure that is operated on using the navigation system, (2) the virtual object represents an image of the therapeutic object, with radiological images or computer generated models potentially being used, and (3) last but not least, the navigator acquires the spatial position and orientation of instruments and anatomy thus providing the necessary data to replay surgical action in real-time on the navigation system's screen.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

PURPOSE: To assess the literature on accuracy and clinical performance of computer technology applications in surgical implant dentistry. MATERIALS AND METHODS: Electronic and manual literature searches were conducted to collect information about (1) the accuracy and (2) clinical performance of computer-assisted implant systems. Meta-regression analysis was performed for summarizing the accuracy studies. Failure/complication rates were analyzed using random-effects Poisson regression models to obtain summary estimates of 12-month proportions. RESULTS: Twenty-nine different image guidance systems were included. From 2,827 articles, 13 clinical and 19 accuracy studies were included in this systematic review. The meta-analysis of the accuracy (19 clinical and preclinical studies) revealed a total mean error of 0.74 mm (maximum of 4.5 mm) at the entry point in the bone and 0.85 mm at the apex (maximum of 7.1 mm). For the 5 included clinical studies (total of 506 implants) using computer-assisted implant dentistry, the mean failure rate was 3.36% (0% to 8.45%) after an observation period of at least 12 months. In 4.6% of the treated cases, intraoperative complications were reported; these included limited interocclusal distances to perform guided implant placement, limited primary implant stability, or need for additional grafting procedures. CONCLUSION: Differing levels and quantity of evidence were available for computer-assisted implant placement, revealing high implant survival rates after only 12 months of observation in different indications and a reasonable level of accuracy. However, future long-term clinical data are necessary to identify clinical indications and to justify additional radiation doses, effort, and costs associated with computer-assisted implant surgery.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this paper, we propose an intelligent method, named the Novelty Detection Power Meter (NodePM), to detect novelties in electronic equipment monitored by a smart grid. Considering the entropy of each device monitored, which is calculated based on a Markov chain model, the proposed method identifies novelties through a machine learning algorithm. To this end, the NodePM is integrated into a platform for the remote monitoring of energy consumption, which consists of a wireless sensors network (WSN). It thus should be stressed that the experiments were conducted in real environments different from many related works, which are evaluated in simulated environments. In this sense, the results show that the NodePM reduces by 13.7% the power consumption of the equipment we monitored. In addition, the NodePM provides better efficiency to detect novelties when compared to an approach from the literature, surpassing it in different scenarios in all evaluations that were carried out.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Integrating physical objects (smart objects) and enterprise IT systems is still a labor intensive, mainly manual task done by domain experts. On one hand, enterprise IT backend systems are based on service oriented architectures (SOA) and driven by business rule engines or business process execution engines. Smart objects on the other hand are often programmed at very low levels. In this paper we describe an approach that makes the integration of smart objects with such backends systems easier. We introduce semantic endpoint descriptions based on Linked USDL. Furthermore, we show how different communication patterns can be integrated into these endpoint descriptions. The strength of our endpoint descriptions is that they can be used to automatically create REST or SOAP endpoints for enterprise systems, even if which they are not able to talk to the smart objects directly. We evaluate our proposed solution with CoAP, UDP and 6LoWPAN, as we anticipate the industry converge towards these standards. Nonetheless, our approach also allows easy integration with backend systems, even if no standardized protocol is used.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Recent advancements in cloud computing have enabled the proliferation of distributed applications, which require management and control of multiple services. However, without an efficient mechanism for scaling services in response to changing environmental conditions and number of users, application performance might suffer, leading to Service Level Agreement (SLA) violations and inefficient use of hardware resources. We introduce a system for controlling the complexity of scaling applications composed of multiple services using mechanisms based on fulfillment of SLAs. We present how service monitoring information can be used in conjunction with service level objectives, predictions, and correlations between performance indicators for optimizing the allocation of services belonging to distributed applications. We validate our models using experiments and simulations involving a distributed enterprise information system. We show how discovering correlations between application performance indicators can be used as a basis for creating refined service level objectives, which can then be used for scaling the application and improving the overall application's performance under similar conditions.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The goal of this roadmap paper is to summarize the state-of-the-art and identify research challenges when developing, deploying and managing self-adaptive software systems. Instead of dealing with a wide range of topics associated with the field, we focus on four essential topics of self-adaptation: design space for self-adaptive solutions, software engineering processes for self-adaptive systems, from centralized to decentralized control, and practical run-time verification & validation for self-adaptive systems. For each topic, we present an overview, suggest future directions, and focus on selected challenges. This paper complements and extends a previous roadmap on software engineering for self-adaptive systems published in 2009 covering a different set of topics, and reflecting in part on the previous paper. This roadmap is one of the many results of the Dagstuhl Seminar 10431 on Software Engineering for Self-Adaptive Systems, which took place in October 2010.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Internet of Things based systems are anticipated to gain widespread use in industrial applications. Standardization efforts, like 6L0WPAN and the Constrained Application Protocol (CoAP) have made the integration of wireless sensor nodes possible using Internet technology and web-like access to data (RESTful service access). While there are still some open issues, the interoperability problem in the lower layers can now be considered solved from an enterprise software vendors' point of view. One possible next step towards integration of real-world objects into enterprise systems and solving the corresponding interoperability problems at higher levels is to use semantic web technologies. We introduce an abstraction of real-world objects, called Semantic Physical Business Entities (SPBE), using Linked Data principles. We show that this abstraction nicely fits into enterprise systems, as SPBEs allow a business object centric view on real-world objects, instead of a pure device centric view. The interdependencies between how currently services in an enterprise system are used and how this can be done in a semantic real-world aware enterprise system are outlined, arguing for the need of semantic services and semantic knowledge repositories. We introduce a lightweight query language, which we use to perform a quantitative analysis of our approach to demonstrate its feasibility.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Linking the physical world to the Internet, also known as the Internet of Things, has increased available information and services in everyday life and in the Enterprise world. In Enterprise IT an increasing number of communication is done between IT backend systems and small IoT devices, for example sensor networks or RFID readers. This introduces some challenges in terms of complexity and integration. We are working on the integration of IoT devices into Enterprise IT by leveraging SOA techniques and Semantic Web technologies. We present a SOA based integration platform for connecting WSNs and large enterprise business processes. For ensuring interoperability our platform is based on Linked Services. These are thoroughly described, machine-readable, machine-reasonable service descriptions.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Cost-efficient operation while satisfying performance and availability guarantees in Service Level Agreements (SLAs) is a challenge for Cloud Computing, as these are potentially conflicting objectives. We present a framework for SLA management based on multi-objective optimization. The framework features a forecasting model for determining the best virtual machine-to-host allocation given the need to minimize SLA violations, energy consumption and resource wasting. A comprehensive SLA management solution is proposed that uses event processing for monitoring and enables dynamic provisioning of virtual machines onto the physical infrastructure. We validated our implementation against serveral standard heuristics and were able to show that our approach is significantly better.