34 resultados para Computer Sciences
em BORIS: Bern Open Repository and Information System - Berna - Suiça
Resumo:
In this paper we present a new population-based implant design methodology, which advances the state-of-the-art approaches by combining shape and bone quality information into the design strategy. The method enhances the mechanical stability of the fixation and reduces the intra-operative in-plane bending which might impede the functionality of the locking mechanism. The method is presented for the case of mandibular locking fixation plates, where the mandibular angle and the bone quality at screw locations are taken into account. Using computational anatomy techniques, the method automatically derives, from a set of computed tomography images, the mandibular angle and the bone thickness and intensity values at the path of every screw. An optimisation strategy is then used to optimise the two parameters of plate angle and screw position. Results for the new design are presented along with a comparison with a commercially available mandibular locking fixation plate. A statistically highly significant improvement was observed. Our experiments allowed us to conclude that an angle of 126° and a screw separation of 8mm is a more suitable design than the standard 120° and 9mm.
Resumo:
The development and evaluation of new algorithms and protocols for Wireless Multimedia Sensor Networks (WMSNs) are usually supported by means of a discrete event network simulator, where OMNeT++ is one of the most important ones. However, experiments involving multimedia transmission, video flows with different characteristics, genres, group of pictures lengths, and coding techniques must be evaluated based also on Quality of Experience (QoE) metrics to reflect the user's perception. Such experiments require the evaluation of video-related information, i.e., frame type, received/lost, delay, jitter, decoding errors, as well as inter and intra-frame dependency of received/distorted videos. However, existing OMNeT++ frameworks for WMSNs do not support video transmissions with QoE-awareness, neither a large set of mobility traces to enable evaluations under different multimedia/mobile situations. In this paper, we propose a Mobile MultiMedia Wireless Sensor Network OMNeT++ framework (M3WSN) to support transmission, control and evaluation of real video sequences in mobile WMSNs.
Resumo:
Using navigation systems in general orthopaedic surgery and, in particular, knee replacement is becoming more and more accepted. This paper describes the basic technological concepts of modern computer assisted surgical systems. It explains the variation in currently available systems and outlines research activities that will potentially influence future products. In general, each navigation system is defined by three components: (1) the therapeutic object is the anatomical structure that is operated on using the navigation system, (2) the virtual object represents an image of the therapeutic object, with radiological images or computer generated models potentially being used, and (3) last but not least, the navigator acquires the spatial position and orientation of instruments and anatomy thus providing the necessary data to replay surgical action in real-time on the navigation system's screen.
Resumo:
Surgical navigation systems visualize the positions and orientations of surgical instruments and implants as graphical overlays onto a medical image of the operated anatomy on a computer monitor. The orthopaedic surgical navigation systems could be categorized according to the image modalities that are used for the visualization of surgical action. In the so-called CT-based systems or 'surgeon-defined anatomy' based systems, where a 3D volume or surface representation of the operated anatomy could be constructed from the preoperatively acquired tomographic data or through intraoperatively digitized anatomy landmarks, a photorealistic rendering of the surgical action has been identified to greatly improve usability of these navigation systems. However, this may not hold true when the virtual representation of surgical instruments and implants is superimposed onto 2D projection images in a fluoroscopy-based navigation system due to the so-called image occlusion problem. Image occlusion occurs when the field of view of the fluoroscopic image is occupied by the virtual representation of surgical implants or instruments. In these situations, the surgeon may miss part of the image details, even if transparency and/or wire-frame rendering is used. In this paper, we propose to use non-photorealistic rendering to overcome this difficulty. Laboratory testing results on foamed plastic bones during various computer-assisted fluoroscopybased surgical procedures including total hip arthroplasty and long bone fracture reduction and osteosynthesis are shown.
Resumo:
BACKGROUND Driving a car is a complex instrumental activity of daily living and driving performance is very sensitive to cognitive impairment. The assessment of driving-relevant cognition in older drivers is challenging and requires reliable and valid tests with good sensitivity and specificity to predict safe driving. Driving simulators can be used to test fitness to drive. Several studies have found strong correlation between driving simulator performance and on-the-road driving. However, access to driving simulators is restricted to specialists and simulators are too expensive, large, and complex to allow easy access to older drivers or physicians advising them. An easily accessible, Web-based, cognitive screening test could offer a solution to this problem. The World Wide Web allows easy dissemination of the test software and implementation of the scoring algorithm on a central server, allowing generation of a dynamically growing database with normative values and ensures that all users have access to the same up-to-date normative values. OBJECTIVE In this pilot study, we present the novel Web-based Bern Cognitive Screening Test (wBCST) and investigate whether it can predict poor simulated driving performance in healthy and cognitive-impaired participants. METHODS The wBCST performance and simulated driving performance have been analyzed in 26 healthy younger and 44 healthy older participants as well as in 10 older participants with cognitive impairment. Correlations between the two tests were calculated. Also, simulated driving performance was used to group the participants into good performers (n=70) and poor performers (n=10). A receiver-operating characteristic analysis was calculated to determine sensitivity and specificity of the wBCST in predicting simulated driving performance. RESULTS The mean wBCST score of the participants with poor simulated driving performance was reduced by 52%, compared to participants with good simulated driving performance (P<.001). The area under the receiver-operating characteristic curve was 0.80 with a 95% confidence interval 0.68-0.92. CONCLUSIONS When selecting a 75% test score as the cutoff, the novel test has 83% sensitivity, 70% specificity, and 81% efficiency, which are good values for a screening test. Overall, in this pilot study, the novel Web-based computer test appears to be a promising tool for supporting clinicians in fitness-to-drive assessments of older drivers. The Web-based distribution and scoring on a central computer will facilitate further evaluation of the novel test setup. We expect that in the near future, Web-based computer tests will become a valid and reliable tool for clinicians, for example, when assessing fitness to drive in older drivers.
Resumo:
Despite the fact that bone mineral density (BMD) is an important fracture risk predictor in human medicine, studies in equine orthopedic research are still lacking. We hypothesized that BMD correlates with bone failure and fatigue fractures of this bone. Thus, the objectives of this study were to measure the structural and mechanical properties of the proximal phalanx with dual energy X-ray absorptiometry (DXA), to correlate the data obtained from DXA and computer tomography (CT) measurements to those obtained by loading pressure examination and to establish representative region of interest (ROI) for in vitro BMD measurements of the equine proximal phalanx for predicting bone failure force. DXA was used to measure the whole bone BMD and additional three ROI sites in 14 equine proximal phalanges. Following evaluation of the bone density, whole bone, cortical width and area in the mid-diaphyseal plane were measured on CT images. Bones were broken using a manually controlled universal bone crusher to measure bone failure force and reevaluated for the site of fractures on follow-up CT images. Compressive load was applied at a constant displacement rate of 2 mm/min until failure, defined as the first clear drop in the load measurement. The lowest BMD was measured at the trabecular region (mean +/- SD: 1.52 +/- 0.12 g/cm2; median: 1.48 g/cm2; range: 1.38-1.83 g/cm2). There was a significant positive linear correlation between trabelcular BMD and the breaking strength (P = 0.023, r = 0.62). The trabecular region of the proximal phalanx appears to be the only significant indicator of failure of strength in vitro. This finding should be reassessed to further reveal the prognostic value of trabecular BMD in an in vivo fracture risk model.
Resumo:
The human face is a vital component of our identity and many people undergo medical aesthetics procedures in order to achieve an ideal or desired look. However, communication between physician and patient is fundamental to understand the patient’s wishes and to achieve the desired results. To date, most plastic surgeons rely on either “free hand” 2D drawings on picture printouts or computerized picture morphing. Alternatively, hardware dependent solutions allow facial shapes to be created and planned in 3D, but they are usually expensive or complex to handle. To offer a simple and hardware independent solution, we propose a web-based application that uses 3 standard 2D pictures to create a 3D representation of the patient’s face on which facial aesthetic procedures such as filling, skin clearing or rejuvenation, and rhinoplasty are planned in 3D. The proposed application couples a set of well-established methods together in a novel manner to optimize 3D reconstructions for clinical use. Face reconstructions performed with the application were evaluated by two plastic surgeons and also compared to ground truth data. Results showed the application can provide accurate 3D face representations to be used in clinics (within an average of 2 mm error) in less than 5 min.