25 resultados para Computer Learning
em BORIS: Bern Open Repository and Information System - Berna - Suiça
Resumo:
An accurate assessment of the computer skills of students is a pre-requisite for the success of any e-learning interventions. The aim of the present study was to assess objectively the computer literacy and attitudes in a group of Greek post-graduate students, using a task-oriented questionnaire developed and validated in the University of Malmö, Sweden. 50 post-graduate students in the Athens University School of Dentistry in April 2005 took part in the study. A total competence score of 0-49 was calculated. Socio-demographic characteristics were recorded. Attitudes towards computer use were assessed. Descriptive statistics and linear regression modeling were employed for data analysis. Total competence score was normally distributed (Shapiro-Wilk test: W = 0.99, V = 0.40, P = 0.97) and ranged from 5 to 42.5, with a mean of 22.6 (+/-8.4). Multivariate analysis revealed 'gender', 'e-mail ownership' and 'enrollment in non-clinical programs' as significant predictors of computer literacy. Conclusively, computer literacy of Greek post-graduate dental students was increased amongst males, students in non-clinical programs and those with more positive attitudes towards the implementation of computer assisted learning.
Resumo:
This book will serve as a foundation for a variety of useful applications of graph theory to computer vision, pattern recognition, and related areas. It covers a representative set of novel graph-theoretic methods for complex computer vision and pattern recognition tasks. The first part of the book presents the application of graph theory to low-level processing of digital images such as a new method for partitioning a given image into a hierarchy of homogeneous areas using graph pyramids, or a study of the relationship between graph theory and digital topology. Part II presents graph-theoretic learning algorithms for high-level computer vision and pattern recognition applications, including a survey of graph based methodologies for pattern recognition and computer vision, a presentation of a series of computationally efficient algorithms for testing graph isomorphism and related graph matching tasks in pattern recognition and a new graph distance measure to be used for solving graph matching problems. Finally, Part III provides detailed descriptions of several applications of graph-based methods to real-world pattern recognition tasks. It includes a critical review of the main graph-based and structural methods for fingerprint classification, a new method to visualize time series of graphs, and potential applications in computer network monitoring and abnormal event detection.
Resumo:
Training a system to recognize handwritten words is a task that requires a large amount of data with their correct transcription. However, the creation of such a training set, including the generation of the ground truth, is tedious and costly. One way of reducing the high cost of labeled training data acquisition is to exploit unlabeled data, which can be gathered easily. Making use of both labeled and unlabeled data is known as semi-supervised learning. One of the most general versions of semi-supervised learning is self-training, where a recognizer iteratively retrains itself on its own output on new, unlabeled data. In this paper we propose to apply semi-supervised learning, and in particular self-training, to the problem of cursive, handwritten word recognition. The special focus of the paper is on retraining rules that define what data are actually being used in the retraining phase. In a series of experiments it is shown that the performance of a neural network based recognizer can be significantly improved through the use of unlabeled data and self-training if appropriate retraining rules are applied.
Resumo:
Prior studies suggest that clients need to actively govern knowledge transfer to vendor staff in offshore outsourcing. In this paper, we analyze longitudinal data from four software maintenance offshore out-sourcing projects to explore why governance may be needed for knowledge transfer and how governance and the individual learning of vendor engineers inter-act over time. Our results suggest that self-control is central to learning, but may be hampered by low levels of trust and expertise at the outset of projects. For these foundations to develop, clients initially need to exert high amounts of formal and clan controls to enforce learning activities against barriers to knowledge sharing. Once learning activities occur, trust and expertise increase and control portfolios may show greater emphases on self-control.
Resumo:
OBJECTIVES Evidence increases that cognitive failure may be used to screen for drivers at risk. Until now, most studies have relied on driving learners. This exploratory pilot study examines self-report of cognitive failure in driving beginners and error during real driving as observed by driving instructors. METHODS Forty-two driving learners of 14 driving instructors filled out a work-related cognitive failure questionnaire. Driving instructors observed driving errors during the next driving lesson. In multiple linear regression analysis, driving errors were regressed on cognitive failure with the number of driving lessons as an estimator of driving experience controlled. RESULTS Higher cognitive failure predicted more driving errors (p < .01) when age, gender and driving experience were controlled in analysis. CONCLUSIONS Cognitive failure was significantly associated with observed driving errors. Systematic research on cognitive failure in driving beginners is recommended.
Resumo:
The assumption that social skills are necessary ingredients of collaborative learning is well established but rarely empirically tested. In addition, most theories on collaborative learning focus on social skills only at the personal level, while the social skill configurations within a learning group might be of equal importance. Using the integrative framework, this study investigates which social skills at the personal level and at the group level are predictive of task-related e-mail communication, satisfaction with performance and perceived quality of collaboration. Data collection took place in a technology-enhanced long-term project-based learning setting for pre-service teachers. For data collection, two questionnaires were used, one at the beginning and one at the end of the learning cycle which lasted 3 months. During the project phase, the e-mail communication between group members was captured as well. The investigation of 60 project groups (N = 155 for the questionnaires; group size: two or three students) and 33 groups for the e-mail communication (N = 83) revealed that personal social skills played only a minor role compared to group level configurations of social skills in predicting satisfaction with performance, perceived quality of collaboration and communication behaviour. Members from groups that showed a high and/or homogeneous configuration of specific social skills (e.g., cooperation/compromising, leadership) usually were more satisfied and saw their group as more efficient than members from groups with a low and/or heterogeneous configuration of skills.
Resumo:
This study examined a new type of cognitive intervention. For four weeks, participants (ages 65 to 82) were instructed in professional acting techniques, followed by rehearsal and performance of theatrical scenes. Although the training was not targeted in any way to the tasks used in pre- and post-testing, participants produced significantly higher recall and recognition scores after the intervention. It is suggested that the cognitive effort involved in analyzing and adopting theatrical characters' motivations (and then experiencing those characters' mental/emotional states during performance) is responsible for the observed improvement. A secondary strand of this study showed that participants who were given annotated scripts in which the implied goals of the characters were made explicit demonstrated significantly faster access to the stored material, as measured by a computer latency task.
Resumo:
This paper addresses an investigation with machine learning (ML) classification techniques to assist in the problem of flash flood now casting. We have been attempting to build a Wireless Sensor Network (WSN) to collect measurements from a river located in an urban area. The machine learning classification methods were investigated with the aim of allowing flash flood now casting, which in turn allows the WSN to give alerts to the local population. We have evaluated several types of ML taking account of the different now casting stages (i.e. Number of future time steps to forecast). We have also evaluated different data representation to be used as input of the ML techniques. The results show that different data representation can lead to results significantly better for different stages of now casting.