43 resultados para Computational Docking

em BORIS: Bern Open Repository and Information System - Berna - Suiça


Relevância:

60.00% 60.00%

Publicador:

Resumo:

In this study, we tested whether a standardized epigallocatechin-3-gallate (EGCG) rich green tea extract (comprising > 90% EGCG) affects fitness and lifespan as well as parameters of glucose metabolism and energy homeostasis in the fruit fly, Drosophila melanogaster. Following the application of the green tea extract a significant increase in the mean lifespan (+ 3.3 days) and the 50% survival (+ 4.3 days) as well as improved fitness was detected. These effects went along an increased expression of Spargel, the homolog of mammalian PGC1α, which has been reported to affect lifespan in flies. Intriguingly, in flies, treatment with the green tea extract decreased glucose concentrations, which were accompanied by an inhibition of α-amylase and α-glucosidase activity. Computational docking analysis proved the potential of EGCG to dock into the substrate binding pocket of α-amylase and to a greater extent into α-glucosidase. Furthermore, we demonstrate that EGCG downregulates insulin-like peptide 5 and phosphoenolpyruvate carboxykinase, major regulators of glucose metabolism, as well as the Drosophila homolog of leptin, unpaired 2. We propose that a decrease in glucose metabolism in connection with an upregulated expression of Spargel contribute to the better fitness and the extended lifespan in EGCG-treated flies.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Cytochrome P450 oxidoreductase (POR) supplies electrons from NADPH to steroid and drug metabolizing reactions catalyzed by the cytochrome P450s located in endoplasmic reticulum. Mutations in human POR cause a wide spectrum of disease ranging from disordered steroidogenesis to sexual differentiation. Previously we and others have shown that POR mutations can lead to reduced activities of steroidogenic P450s CYP17A1, CYP19A1 and CYP21A1. Here we are reporting that mutations in the FMN binding domain of POR may reduce CYP3A4 activity, potentially influencing drug and steroid metabolism; and the loss of CYP3A4 activity may be correlated to the reduction of cytochrome b(5) by POR. Computational molecular docking experiments with a FMN free structural model of POR revealed that an external FMN could be docked in close proximity to the FAD moiety and receive electrons donated by NADPH. Using FMN supplemented assays we have demonstrated restoration of the defective POR activity in vitro.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Enhanced production of proinflammatory bradykinin-related peptides, the kinins, has been suggested to contribute to the pathogenesis of periodontitis, a common inflammatory disease of human gingival tissues. In this report, we describe a plausible mechanism of activation of the kinin-generating system, also known as the contact system or kininogen-kallikrein-kinin system, by the adsorption of its plasma-derived components such as high-molecular-mass kininogen (HK), prekallikrein (PK), and Hageman factor (FXII) to the cell surface of periodontal pathogen Porphyromonas gingivalis. The adsorption characteristics of mutant strains deficient in selected proteins of the cell envelope suggested that the surface-associated cysteine proteinases, gingipains, bearing hemagglutinin/adhesin domains (RgpA and Kgp) serve as the major platforms for HK and FXII adhesion. These interactions were confirmed by direct binding tests using microplate-immobilized gingipains and biotinylated contact factors. Other bacterial cell surface components such as fimbriae and lipopolysaccharide were also found to contribute to the binding of contact factors, particularly PK. Analysis of kinin release in plasma upon contact with P. gingivalis showed that the bacterial surface-dependent mechanism is complementary to the previously described kinin generation system dependent on HK and PK proteolytic activation by the gingipains. We also found that several P. gingivalis clinical isolates differed in the relative significance of these two mechanisms of kinin production. Taken together, these data show the importance of this specific type of bacterial surface-host homeostatic system interaction in periodontal infections.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The phosphorylation state and corresponding activity of the retinoblastoma tumor suppressor protein (Rb) are modulated by a balance of kinase and phosphatase activities. Here we characterize the association of Rb with the catalytic subunit of protein phosphatase 1 (PP1c). A crystal structure identifies an enzyme docking site in the Rb C-terminal domain that is required for efficient PP1c activity toward Rb. The phosphatase docking site overlaps with the known docking site for cyclin-dependent kinase (Cdk), and PP1 competition with Cdk-cyclins for Rb binding is sufficient to retain Rb activity and block cell-cycle advancement. These results provide the first detailed molecular insights into Rb activation and establish a novel mechanism for Rb regulation in which kinase and phosphatase compete for substrate docking.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

To assess if finite element (FE) models can be used to predict deformation of the femoropopliteal segment during knee flexion.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Peroxisome proliferator-activated receptor ? (PPAR?) is a transcription factor that promotes differentiation and cell survival in the stomach. PPAR? upregulates and interacts with caveolin-1 (Cav1), a scaffold protein of Ras/mitogen-activated protein kinases (MAPKs). The cytoplasmic-to-nuclear localization of PPAR? is altered in gastric cancer (GC) patients, suggesting a so-far-unknown role for Cav1 in spatial regulation of PPAR? signaling. We show here that loss of Cav1 accelerated proliferation of normal stomach and GC cells in vitro and in vivo. Downregulation of Cav1 increased Ras/MAPK-dependent phosphorylation of serine 84 in PPAR? and enhanced nuclear translocation and ligand-independent transcription of PPAR? target genes. In contrast, Cav1 overexpression sequestered PPAR? in the cytosol through interaction of the Cav1 scaffolding domain (CSD) with a conserved hydrophobic motif in helix 7 of PPAR?'s ligand-binding domain. Cav1 cooperated with the endogenous Ras/MAPK inhibitor docking protein 1 (Dok1) to promote the ligand-dependent transcriptional activity of PPAR? and to inhibit cell proliferation. Ligand-activated PPAR? also reduced tumor growth and upregulated the Ras/MAPK inhibitors Cav1 and Dok1 in a murine model of GC. These results suggest a novel mechanism of PPAR? regulation by which Ras/MAPK inhibitors act as scaffold proteins that sequester and sensitize PPAR? to ligands, limiting proliferation of gastric epithelial cells.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The hERG voltage-gated potassium channel mediates the cardiac I(Kr) current, which is crucial for the duration of the cardiac action potential. Undesired block of the channel by certain drugs may prolong the QT interval and increase the risk of malignant ventricular arrhythmias. Although the molecular determinants of hERG block have been intensively studied, not much is known about its stereoselectivity. Levo-(S)-bupivacaine was the first drug reported to have a higher affinity to block hERG than its enantiomer. This study strives to understand the principles underlying the stereoselectivity of bupivacaine block with the help of mutagenesis analyses and molecular modeling simulations. Electrophysiological measurements of mutated hERG channels allowed for the identification of residues involved in bupivacaine binding and stereoselectivity. Docking and molecular mechanics simulations for both enantiomers of bupivacaine and terfenadine (a non-stereoselective blocker) were performed inside an open-state model of the hERG channel. The predicted binding modes enabled a clear depiction of ligand-protein interactions. Estimated binding affinities for both enantiomers were consistent with electrophysiological measurements. A similar computational procedure was applied to bupivacaine enantiomers towards two mutated hERG channels (Tyr652Ala and Phe656Ala). This study confirmed, at the molecular level, that bupivacaine stereoselectively binds the hERG channel. These results help to lay the foundation for structural guidelines to optimize the cardiotoxic profile of drug candidates in silico.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Dynamic core-shell nanoparticles have received increasing attention in recent years. This paper presents a detailed study of Au-Hg nanoalloys, whose composing elements show a large difference in cohesive energy. A simple method to prepare Au@Hg particles with precise control over the composition up to 15 atom% mercury is introduced, based on reacting a citrate stabilized gold sol with elemental mercury. Transmission electron microscopy shows an increase of particle size with increasing mercury content and, together with X-ray powder diffraction, points towards the presence of a core-shell structure with a gold core surrounded by an Au-Hg solid solution layer. The amalgamation process is described by pseudo-zero-order reaction kinetics, which indicates slow dissolution of mercury in water as the rate determining step, followed by fast scavenging by nanoparticles in solution. Once adsorbed at the surface, slow diffusion of Hg into the particle lattice occurs, to a depth of ca. 3 nm, independent of Hg concentration. Discrete dipole approximation calculations relate the UV-vis spectra to the microscopic details of the nanoalloy structure. Segregation energies and metal distribution in the nanoalloys were modeled by density functional theory calculations. The results indicate slow metal interdiffusion at the nanoscale, which has important implications for synthetic methods aimed at core-shell particles.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Background The reduction in the amount of food available for European avian scavengers as a consequence of restrictive public health policies is a concern for managers and conservationists. Since 2002, the application of several sanitary regulations has limited the availability of feeding resources provided by domestic carcasses, but theoretical studies assessing whether the availability of food resources provided by wild ungulates are enough to cover energetic requirements are lacking. Methodology/Findings We assessed food provided by a wild ungulate population in two areas of NE Spain inhabited by three vulture species and developed a P System computational model to assess the effects of the carrion resources provided on their population dynamics. We compared the real population trend with to a hypothetical scenario in which only food provided by wild ungulates was available. Simulation testing of the model suggests that wild ungulates constitute an important food resource in the Pyrenees and the vulture population inhabiting this area could grow if only the food provided by wild ungulates would be available. On the contrary, in the Pre-Pyrenees there is insufficient food to cover the energy requirements of avian scavenger guilds, declining sharply if biomass from domestic animals would not be available. Conclusions/Significance Our results suggest that public health legislation can modify scavenger population trends if a large number of domestic ungulate carcasses disappear from the mountains. In this case, food provided by wild ungulates could be not enough and supplementary feeding could be necessary if other alternative food resources are not available (i.e. the reintroduction of wild ungulates), preferably in European Mediterranean scenarios sharing similar and socio-economic conditions where there are low densities of wild ungulates. Managers should anticipate the conservation actions required by assessing food availability and the possible scenarios in order to make the most suitable decisions.