4 resultados para Composite cement slurries
em BORIS: Bern Open Repository and Information System - Berna - Suiça
Temporary zinc oxide-eugenol cement: eugenol quantity in dentin and bond strength of resin composite
Resumo:
Uptake of eugenol from eugenol-containing temporary materials may reduce the adhesion of subsequent resin-based restorations. This study investigated the effect of duration of exposure to zinc oxide–eugenol (ZOE) cement on the quantity of eugenol retained in dentin and on the microtensile bond strength (μTBS) of the resin composite. The ZOE cement (IRM Caps) was applied onto the dentin of human molars (21 per group) for 1, 7, or 28 d. One half of each molar was used to determine the quantity of eugenol (by spectrofluorimetry) and the other half was used for μTBS testing. The ZOE-exposed dentin was treated with either OptiBond FL using phosphoric acid (H3PO4) or with Gluma Classic using ethylenediaminetetraacetic acid (EDTA) conditioning. One group without conditioning (for eugenol quantity) and two groups not exposed to ZOE (for eugenol quantity and μTBS testing) served as controls. The quantity of eugenol ranged between 0.33 and 2.9 nmol mg−1 of dentin (median values). No effect of the duration of exposure to ZOE was found. Conditioning with H3PO4 or EDTA significantly reduced the quantity of eugenol in dentin. Nevertheless, for OptiBond FL, exposure to ZOE significantly decreased the μTBS, regardless of the duration of exposure. For Gluma Classic, the μTBS decreased after exposure to ZOE for 7 and 28 d. OptiBond FL yielded a significantly higher μTBS than did Gluma Classic. Thus, ZOE should be avoided in cavities later to be restored with resin-based materials.
Resumo:
STUDY DESIGN: The biomechanics of vertebral bodies augmented with real distributions of cement were investigated using nonlinear finite element (FE) analysis. OBJECTIVES: To compare stiffness, strength, and stress transfer of augmented versus nonaugmented osteoporotic vertebral bodies under compressive loading. Specifically, to examine how cement distribution, volume, and compliance affect these biomechanical variables. SUMMARY OF BACKGROUND DATA: Previous FE studies suggested that vertebroplasty might alter vertebral stress transfer, leading to adjacent vertebral failure. However, no FE study so far accounted for real cement distributions and bone damage accumulation. METHODS: Twelve vertebral bodies scanned with high-resolution pQCT and tested in compression were augmented with various volumes of cements and scanned again. Nonaugmented and augmented pQCT datasets were converted to FE models, with bone properties modeled with an elastic, plastic and damage constitutive law that was previously calibrated for the nonaugmented models. The cement-bone composite was modeled with a rule of mixture. The nonaugmented and augmented FE models were subjected to compression and their stiffness, strength, and stress map calculated for different cement compliances. RESULTS: Cement distribution dominated the stiffening and strengthening effects of augmentation. Models with cement connecting either the superior or inferior endplate (S/I fillings) were only up to 2 times stiffer than the nonaugmented models with minimal strengthening, whereas those with cement connecting both endplates (S + I fillings) were 1 to 8 times stiffer and 1 to 12 times stronger. Stress increases above and below the cement, which was higher for the S + I cases and was significantly reduced by increasing cement compliance. CONCLUSION: The developed FE approach, which accounts for real cement distributions and bone damage accumulation, provides a refined insight into the mechanics of augmented vertebral bodies. In particular, augmentation with compliant cement bridging both endplates would reduce stress transfer while providing sufficient strengthening.
Resumo:
PURPOSE To determine the best-performing combination of three core buildup materials and three bonding materials based on their bond strength to ceramic blocks in vitro. MATERIALS AND METHODS The materials used for core buildup were a composite (Tetric EvoCeram), a compomer (Compoglass F), and a glass-ionomer cement (Ketac Fil Plus), and for bonding, a three-step etch-and-rinse adhesive (Syntac), a two-step etch-and-rinse adhesive (ExciTE), and a single-step system (RelyX Unicem). Bond strength to ceramic blocks was determined by shear bond strength testing. Fracture behavior was evaluated by scanning electron microscopy. RESULTS The highest adhesive values between buildup and ceramic were obtained using the materials Compoglass F and Syntac, followed by Compoglass F and ExciTE. Among the two other core buildups, Tetric EvoCeram performed better than Ketac Fil Plus, which was independent of the bonding materials. Adhesive fractures were characteristically observed with Syntac and ExciTE, and cohesive fractures were characteristically observed with RelyX Unicem. CONCLUSION These data show that compomers bonded with a multistep adhesive system achieved statistically significantly higher shear bond strength than composites and glass-ionomer cements. Within the limitations inherent to this in vitro study, the use of compomers for core buildup can be recommended.