60 resultados para Competitive season
em BORIS: Bern Open Repository and Information System - Berna - Suiça
Resumo:
PURPOSE: Alpine ski performance relates closely to both anaerobic and aerobic capacities. During their competitive season, skiers greatly reduce endurance and weight training, and on-snow training becomes predominant. To typify this shift, we compared exhaustive ramp cycling and squat (SJ) and countermovement jumping (CMJ) performance in elite males before and after their competitive season. RESULTS: In postseason compared with preseason: 1) maximal oxygen uptake (VO 2 max) normalized to bodyweight was higher (55.2 +/- 5.2 vs 52.7 +/- 3.6 mL x kg(-1) x min(-1), P < 0.01), but corresponding work rate (W) was unchanged; 2) at ventilatory thresholds (VT), absolute and relative work rates were similar but heart rates were lower; 3) VO2/W slope was greater (9.59 +/- 0.6 vs 9.19 +/- 0.4 mL O2 x min(-1) x W(-1), P = 0.02), with similar flattening (P < 0.01) above V T1 at both time points; and 4) jump height was greater in SJ (47.4 +/- 4.4 vs 44.7 +/- 4.3 cm, P < 0.01) and CMJ (52.7 +/- 4.6 vs 50.4 +/- 5.0 cm, P < 0.01). DISCUSSION: We believe that aerobic capacity and leg power were constrained in preseason and that improvements primarily reflected an in-season recovery from a fatigued state, which was caused by incongruous preseason training. Residual adaptations to high-altitude exposure in preseason could have also affected the results. Nonetheless, modern alpine skiing seemingly provides an ample cardiovascular training stimulus for skiers to maintain their aerobic capacities during the racing season. CONCLUSIONS: We conclude that aerobic fitness and leg explosiveness can be maintained in-season but may be compromised by heavy or excessive preseason training. In addition, ramp test V O2/W slope analysis could be useful for monitoring both positive and negative responses to training.
Resumo:
To study whether onset of infantile spasms manifests seasonal variation, as previously reported, and whether any such seasonality is associated with treatment response and long-term outcome, data for 57 patients were retrospectively reviewed. The data were collected from hospital files and through a mail survey of children with infantile spasms born from 1980 to 2002 and monitored at the University Children's Hospital of Berne, Switzerland. The mean age at time of onset of infantile spasms was 7 months (range, 0.75-40), at diagnosis 8 months (range, 1-42) and at follow-up 11.3 years (range, 1-23 years). In 77% of participants, the etiology of infantile spasms was known (symptomatic); in the remaining 23% it was not known (nonsymptomatic). In contrast to previous findings, onset of infantile spasms was not associated with calendar month, photoperiod, or global solar radiation. Long-term prognosis was poor: 4 of the 57 (7%) children died; 49 (86%) had cognitive impairment and 40 (70%) had physical impairment; 31 (54%) had cerebral palsy, 37 had (65%) persistent seizures, and 9 (16%) had Lennox-Gastaut syndrome. Symptomatic infantile spasms were associated with worse cognitive outcome (P < 0.001), but treatment modality and overall duration of infantile spasms were not. There was no association of calendar month or photoperiod at onset with cognitive outcome or treatment response.
Recurrent antitopographic inhibition mediates competitive stimulus selection in an attention network
Resumo:
Topographically organized neurons represent multiple stimuli within complex visual scenes and compete for subsequent processing in higher visual centers. The underlying neural mechanisms of this process have long been elusive. We investigate an experimentally constrained model of a midbrain structure: the optic tectum and the reciprocally connected nucleus isthmi. We show that a recurrent antitopographic inhibition mediates the competitive stimulus selection between distant sensory inputs in this visual pathway. This recurrent antitopographic inhibition is fundamentally different from surround inhibition in that it projects on all locations of its input layer, except to the locus from which it receives input. At a larger scale, the model shows how a focal top-down input from a forebrain region, the arcopallial gaze field, biases the competitive stimulus selection via the combined activation of a local excitation and the recurrent antitopographic inhibition. Our findings reveal circuit mechanisms of competitive stimulus selection and should motivate a search for anatomical implementations of these mechanisms in a range of vertebrate attentional systems.