2 resultados para Compartmental Modelling

em BORIS: Bern Open Repository and Information System - Berna - Suiça


Relevância:

30.00% 30.00%

Publicador:

Resumo:

Background Pelvic inflammatory disease (PID) results from the ascending spread of microorganisms from the vagina and endocervix to the upper genital tract. PID can lead to infertility, ectopic pregnancy and chronic pelvic pain. The timing of development of PID after the sexually transmitted bacterial infection Chlamydia trachomatis (chlamydia) might affect the impact of screening interventions, but is currently unknown. This study investigates three hypothetical processes for the timing of progression: at the start, at the end, or throughout the duration of chlamydia infection. Methods We develop a compartmental model that describes the trial structure of a published randomised controlled trial (RCT) and allows each of the three processes to be examined using the same model structure. The RCT estimated the effect of a single chlamydia screening test on the cumulative incidence of PID up to one year later. The fraction of chlamydia infected women who progress to PID is obtained for each hypothetical process by the maximum likelihood method using the results of the RCT. Results The predicted cumulative incidence of PID cases from all causes after one year depends on the fraction of chlamydia infected women that progresses to PID and on the type of progression. Progression at a constant rate from a chlamydia infection to PID or at the end of the infection was compatible with the findings of the RCT. The corresponding estimated fraction of chlamydia infected women that develops PID is 10% (95% confidence interval 7-13%) in both processes. Conclusions The findings of this study suggest that clinical PID can occur throughout the course of a chlamydia infection, which will leave a window of opportunity for screening to prevent PID.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

BACKGROUND Pathogenic bacteria are often asymptomatically carried in the nasopharynx. Bacterial carriage can be reduced by vaccination and has been used as an alternative endpoint to clinical disease in randomised controlled trials (RCTs). Vaccine efficacy (VE) is usually calculated as 1 minus a measure of effect. Estimates of vaccine efficacy from cross-sectional carriage data collected in RCTs are usually based on prevalence odds ratios (PORs) and prevalence ratios (PRs), but it is unclear when these should be measured. METHODS We developed dynamic compartmental transmission models simulating RCTs of a vaccine against a carried pathogen to investigate how VE can best be estimated from cross-sectional carriage data, at which time carriage should optimally be assessed, and to which factors this timing is most sensitive. In the models, vaccine could change carriage acquisition and clearance rates (leaky vaccine); values for these effects were explicitly defined (facq, 1/fdur). POR and PR were calculated from model outputs. Models differed in infection source: other participants or external sources unaffected by the trial. Simulations using multiple vaccine doses were compared to empirical data. RESULTS The combined VE against acquisition and duration calculated using POR (VEˆacq.dur, (1-POR)×100) best estimates the true VE (VEacq.dur, (1-facq×fdur)×100) for leaky vaccines in most scenarios. The mean duration of carriage was the most important factor determining the time until VEˆacq.dur first approximates VEacq.dur: if the mean duration of carriage is 1-1.5 months, up to 4 months are needed; if the mean duration is 2-3 months, up to 8 months are needed. Minor differences were seen between models with different infection sources. In RCTs with shorter intervals between vaccine doses it takes longer after the last dose until VEˆacq.dur approximates VEacq.dur. CONCLUSION The timing of sample collection should be considered when interpreting vaccine efficacy against bacterial carriage measured in RCTs.