47 resultados para Compact fluorescent lamp
em BORIS: Bern Open Repository and Information System - Berna - Suiça
Resumo:
We investigated whether human articular chondrocytes can be labeled efficiently and for long-term with a green fluorescent protein (GFP) lentivirus and whether the viral transduction would influence cell proliferation and tissue-forming capacity. The method was then applied to track goat articular chondrocytes after autologous implantation in cartilage defects. Expression of GFP in transduced chondrocytes was detected cytofluorimetrically and immunohistochemically. Chondrogenic capacity of chondrocytes was assessed by Safranin-O staining, immunostaining for type II collagen, and glycosaminoglycan content. Human articular chondrocytes were efficiently transduced with GFP lentivirus (73.4 +/- 0.5% at passage 1) and maintained the expression of GFP up to 22 weeks of in vitro culture after transduction. Upon implantation in nude mice, 12 weeks after transduction, the percentage of labeled cells (73.6 +/- 3.3%) was similar to the initial one. Importantly, viral transduction of chondrocytes did not affect the cell proliferation rate, chondrogenic differentiation, or tissue-forming capacity, either in vitro or in vivo. Goat articular chondrocytes were also efficiently transduced with GFP lentivirus (78.3 +/- 3.2%) and maintained the expression of GFP in the reparative tissue after orthotopic implantation. This study demonstrates the feasibility of efficient and relatively long-term labeling of human chondrocytes for co-culture on integration studies, and indicates the potential of this stable labeling technique for tracking animal chondrocytes for in cartilage repair studies.
Resumo:
Iron-platinum nanoparticles embedded in a poly(methacrylic acid) (PMA) polymer shell and fluorescently labeled with the dye ATTO 590 (FePt-PMA-ATTO-2%) are investigated in terms of their intracellular localization in lung cells and potential to induce a proinflammatory response dependent on concentration and incubation time. A gold core coated with the same polymer shell (Au-PMA-ATTO-2%) is also included. Using laser scanning and electron microscopy techniques, it is shown that the FePt-PMA-ATTO-2% particles penetrate all three types of cell investigated but to a higher extent in macrophages and dendritic cells than epithelial cells. In both cell types of the defense system but not in epithelial cells, a particle-dose-dependent increase of the cytokine tumor necrosis factor alpha (TNFalpha) is found. By comparing the different nanoparticles and the mere polymer shell, it is shown that the cores combined with the shells are responsible for the induction of proinflammatory effects and not the shells alone. It is concluded that the uptake behavior and the proinflammatory response upon particle exposure are dependent on the time, cell type, and cell culture.
Resumo:
AIM: The purpose of this study was to evaluate the activation of resin-modified glass ionomer restorative material (RMGI, Vitremer-3M-ESPE, A3) by halogen lamp (QTH) or light-emitting diode (LED) by Knoop microhardness (KHN) in two storage conditions: 24hrs and 6 months and in two depths (0 and 2 mm). MATERIALS AND METHODS: The specimens were randomly divided into 3 experimental groups (n=10) according to activation form and evaluated in depth after 24h and after 6 months of storage. Activation was performed with QTH for 40s (700 mW/cm2) and for 40 or 20 s with LED (1,200 mW/scm2). After 24 hrs and 6 months of storage at 37°C in relative humidity in lightproof container, the Knoop microhardness test was performed. Statistics Data were analysed by three-way ANOVA and Tukey post-tests (p<0.05). RESULTS: All evaluated factors showed significant differences (p<0.05). After 24 hrs there were no differences within the experimental groups. KHN at 0 mm was significantly higher than 2 mm. After 6 months, there was an increase of microhardness values for all groups, being the ones activated by LED higher than the ones activated by QTH. CONCLUSION: Light-activation with LED positively influenced the KHN for RMGI evaluated after 6 months.
Resumo:
Medical literature regularly reports on accidental poisoning in children after aspiration of combustibles such as lamp oils which usually contain hydrocarbons or rape methyl esters (RMEs). We aimed to analyze the toxic potential of alkanes and different combustible classes in vitro with regard to biologic responses and mechanisms mediating toxicity. Two different in vitro models were used, i.e. (i) a captive bubble surfactometer (CBS) to assess direct influence of combustibles on biophysical properties of surfactant film and (ii) cell cultures (BEAS-2B and R3/1 cells, primary macrophages, re-differentiated epithelia) closely mimicking the inner lung surface. Biological endpoints included cell viability, cytotoxicity and inflammatory mediator release. CBS measurements demonstrate that combustibles affect film dynamics, i.e. the surface tension/area characteristics during compression and expansion, in a dose and molecular chain length dependent manner. Cell culture results confirm the dose dependent toxicity. Generally, cytotoxicity and cytokine release are higher in short-chained alkanes and hydrocarbon-based combustibles than in long-chained substances, e.g. highest inducible cytotoxicity in BEAS-2B was for hexane 84.6%, decane 74% and hexadecane 30.8%. Effects of RME-based combustibles differed between the cell models. Our results confirm data from animal experiments and give new insights into the mechanisms underlying the adverse health effects observed.