46 resultados para Communication in management.

em BORIS: Bern Open Repository and Information System - Berna - Suiça


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Although guidelines recommend similar evaluation and treatment for both sexes, differences in approach and outcomes have been reported.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Fish populations are increasingly being subjected to anthropogenic changes to their sensory environments. The impact of these changes on inter- and intra-specific communication, and its evolutionary consequences, has only recently started to receive research attention. A disruption of the sensory environment is likely to impact communication, especially with respect to reproductive interactions that help to maintain species boundaries. Aquatic ecosystems around the world are being threatened by a variety of environmental stressors, causing dramatic losses of biodiversity and bringing urgency to the need to understand how fish respond to rapid environmental changes. Here, we discuss current research on different communication systems (visual, chemical, acoustic, electric) and explore the state of our knowledge of how complex systems respond to environmental stressors using fish as a model. By far the bulk of our understanding comes from research on visual communication in the context of mate selection and competition for mates, while work on other communication systems is accumulating. In particular, it is increasingly acknowledged that environmental effects on one mode of communication may trigger compensation through other modalities. The strength and direction of selection on communication traits may vary if such compensation occurs. However, we find a dearth of studies that have taken a multimodal approach to investigating the evolutionary impact of environmental change on communication in fish. Future research should focus on the interaction between different modes of communication, especially under changing environmental conditions. Further, we see an urgent need for a better understanding of the evolutionary consequences of changes in communication systems on fish diversity.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

To describe and discuss the most recent advances in the management of low-risk febrile neutropenia in children with cancer.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This paper is a summary of the main contribu- tions of the PhD thesis published in [1]. The main research contributions of the thesis are driven by the research question how to design simple, yet efficient and robust run-time adaptive resource allocation schemes within the commu- nication stack of Wireless Sensor Network (WSN) nodes. The thesis addresses several problem domains with con- tributions on different layers of the WSN communication stack. The main contributions can be summarized as follows: First, a a novel run-time adaptive MAC protocol is intro- duced, which stepwise allocates the power-hungry radio interface in an on-demand manner when the encountered traffic load requires it. Second, the thesis outlines a metho- dology for robust, reliable and accurate software-based energy-estimation, which is calculated at network run- time on the sensor node itself. Third, the thesis evaluates several Forward Error Correction (FEC) strategies to adap- tively allocate the correctional power of Error Correcting Codes (ECCs) to cope with timely and spatially variable bit error rates. Fourth, in the context of TCP-based communi- cations in WSNs, the thesis evaluates distributed caching and local retransmission strategies to overcome the perfor- mance degrading effects of packet corruption and trans- mission failures when transmitting data over multiple hops. The performance of all developed protocols are eval- uated on a self-developed real-world WSN testbed and achieve superior performance over selected existing ap- proaches, especially where traffic load and channel condi- tions are suspect to rapid variations over time.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Hemodialysis (HD) is a renal replacement therapy that can enable recovery of patients in acute kidney failure and prolong survival for patients with end-stage kidney failure. HD is also uniquely suited for management of refractory volume overload and removal of certain toxins from the bloodstream. Over the last decade, veterinary experience with HD has deepened and refined and its geographic availability has increased. As awareness of the usefulness and availability of dialytic therapy increases among veterinarians and pet owners and the number of veterinary dialysis facilities increases, dialytic management will become the standard of advanced care for animals with severe intractable uremia.