72 resultados para Combustion pro-cess
em BORIS: Bern Open Repository and Information System - Berna - Suiça
Resumo:
Alternative fuels are increasingly combusted in diesel- and gasoline engines and the contribution of such exhausts to the overall air pollution is on the rise. Recent findings on the possible adverse effects of biodiesel exhaust are contradictive, at least partly resulting from the various fuel qualities, engine types and different operation conditions that were tested. However, most of the studies are biased by undesired interactions between the exhaust samples and biological culture media. We here report how complete, freshly produced exhausts from fossil diesel (B0), from a blend of 20% rapeseed-methyl ester (RME) and 80% fossil diesel (B20) and from pure rapeseed methyl ester (B100) affect a complex 3D cellular model of the human airway epithelium in vitro by exposing the cells at the air–liquid interface. The induction of pro-apoptotic and necrotic cell death, cellular morphology, oxidative stress, and pro-inflammatory responses were assessed. Compared to B0 exhaust, B20 exhaust decreased oxidative stress and pro-inflammatory responses, whereas B100 exhaust, depending on exposure duration, decreased oxidative stress but increased pro-inflammatory responses. The effects are only very weak and given the compared to fossil diesel higher ecological sustainability of biodiesel, it appears that – at least RME – can be considered a valuable alternative to pure fossil diesel.
Resumo:
Combustion-derived and manufactured nanoparticles (NPs) are known to provoke oxidative stress and inflammatory responses in human lung cells; therefore, they play an important role during the development of adverse health effects. As the lungs are composed of more than 40 different cell types, it is of particular interest to perform toxicological studies with co-cultures systems, rather than with monocultures of only one cell type, to gain a better understanding of complex cellular reactions upon exposure to toxic substances. Monocultures of A549 human epithelial lung cells, human monocyte-derived macrophages and monocyte-derived dendritic cells (MDDCs) as well as triple cell co-cultures consisting of all three cell types were exposed to combustion-derived NPs (diesel exhaust particles) and to manufactured NPs (titanium dioxide and single-walled carbon nanotubes). The penetration of particles into cells was analysed by transmission electron microscopy. The amount of intracellular reactive oxygen species (ROS), the total antioxidant capacity (TAC) and the production of tumour necrosis factor (TNF)-alpha and interleukin (IL)-8 were quantified. The results of the monocultures were summed with an adjustment for the number of each single cell type in the triple cell co-culture. All three particle types were found in all cell and culture types. The production of ROS was induced by all particle types in all cell cultures except in monocultures of MDDCs. The TAC and the (pro-)inflammatory reactions were not statistically significantly increased by particle exposure in any of the cell cultures. Interestingly, in the triple cell co-cultures, the TAC and IL-8 concentrations were lower and the TNF-alpha concentrations were higher than the expected values calculated from the monocultures. The interplay of different lung cell types seems to substantially modulate the oxidative stress and the inflammatory responses after NP exposure.
Resumo:
To compare gingival crevicular fluid (GCF) biomarker levels and microbial distribution in plaque biofilm (SP) samples for subjects with type 1 diabetes (T1DM) versus healthy subjects without diabetes during experimental gingivitis (EG).
Resumo:
The skin irritant polyyne falcarinol (panaxynol, carotatoxin) is found in carrots, parsley, celery, and in the medicinal plant Panax ginseng. In our ongoing search for new cannabinoid (CB) receptor ligands we have isolated falcarinol from the endemic Sardinian plant Seseli praecox. We show that falcarinol exhibits binding affinity to both human CB receptors but selectively alkylates the anandamide binding site in the CB(1) receptor (K(i)=594nM), acting as covalent inverse agonist in CB(1) receptor-transfected CHO cells. Given the inherent instability of purified falcarinol we repeatedly isolated this compound for biological characterization and one new polyyne was characterized. In human HaCaT keratinocytes falcarinol increased the expression of the pro-allergic chemokines IL-8 and CCL2/MCP-1 in a CB(1) receptor-dependent manner. Moreover, falcarinol inhibited the effects of anandamide on TNF-alpha stimulated keratinocytes. In vivo, falcarinol strongly aggravated histamine-induced oedema reactions in skin prick tests. Both effects were also obtained with the CB(1) receptor inverse agonist rimonabant, thus indicating the potential role of the CB(1) receptor in skin immunopharmacology. Our data suggest anti-allergic effects of anandamide and that falcarinol-associated dermatitis is due to antagonism of the CB(1) receptor in keratinocytes, leading to increased chemokine expression and aggravation of histamine action.
Resumo:
QUESTIONS UNDER STUDY / PRINCIPLES: The value of postoperative pro-calcitonin (PCT) in the follow-up of patients with localised infections in the orthopaedic domain is unknown.
Resumo:
Activation of prosurvival kinases and subsequent nitric oxide (NO) production by certain G protein-coupled receptors (GPCRs) protects myocardium in ischemia/reperfusion injury (I/R) models. GPCR signaling pathways are regulated by GPCR kinases (GRKs), and GRK2 has been shown to be a critical molecule in normal and pathological cardiac function.
Resumo:
Acetaminophen (N-acetyl-para-aminophenol (APAP), paracetamol) is a commonly used analgesic and antipyretic agent. Although considered safe at therapeutic doses, accidental or intentional overdose causes acute liver failure characterized by centrilobular hepatic necrosis with high morbidity and mortality. Although many molecular aspects of APAP-induced cell death have been described, no conclusive mechanism has been proposed. We recently identified TNF-related apoptosis-inducing ligand (TRAIL) and c-Jun kinase (JNK)-dependent activation of the pro-apoptotic Bcl-2 homolog Bim as an important apoptosis amplification pathway in hepatocytes. In this study, we, thus, investigated the role of TRAIL, c-JNK and Bim in APAP-induced liver damage. Our results demonstrate that TRAIL strongly synergizes with APAP in inducing cell death in hepatocyte-like cells lines and primary hepatocyte. Furthermore, we found that APAP strongly induces the expression of Bim in a c-JNK-dependent manner. Consequently, TRAIL- or Bim-deficient mice were substantially protected from APAP-induced liver damage. This study identifies the TRAIL-JNK-Bim axis as a novel target in the treatment of APAP-induced liver damage and substantiates its general role in hepatocyte death.
Resumo:
Meprin-α is a metalloprotease overexpressed in cancer cells, leading to the accumulation of this protease in a subset of colorectal tumors. The impact of increased meprin-α levels on tumor progression is not known. We investigated the effect of this protease on cell migration and angiogenesis in vitro and studied the expression of meprin-α mRNA, protein and proteolytic activity in primary tumors at progressive stages and in liver metastases of patients with colorectal cancer, as well as inhibitory activity towards meprin-α in sera of cancer patient as compared to healthy controls. We found that the hepatocyte growth factor (HGF)-induced migratory response of meprin-transfected epithelial cells was increased compared to wild-type cells in the presence of plasminogen, and that the angiogenic response in organ-cultured rat aortic explants was enhanced in the presence of exogenous human meprin-α. In patients, meprin-α mRNA was expressed in colonic adenomas, primary tumors UICC (International Union Against Cancer) stage I, II, III and IV, as well as in liver metastases. In contrast, the corresponding protein accumulated only in primary tumors and liver metastases, but not in adenomas. However, liver metastases lacked meprin-α activity despite increased expression of the corresponding protein, which correlated with inefficient zymogen activation. Sera from cancer patients exhibited reduced meprin-α inhibition compared to healthy controls. In conclusion, meprin-α activity is regulated differently in primary tumors and metastases, leading to high proteolytic activity in primary tumors and low activity in liver metastases. By virtue of its pro-migratory and pro-angiogenic activity, meprin-α may promote tumor progression in colorectal cancer.
Resumo:
Long-term endurance sports are associated with atrial remodeling and an increased risk for atrial fibrillation (AF) and atrial flutter. Pro-atrial natriuretic peptide (pro-ANP) is a marker of atrial wall tension and elevated in patients with AF. The aim of this study was to test the hypothesis that atrial remodeling would be perpetuated by repetitive episodes of atrial stretching during strenuous competitions, reflected by elevated levels of pro-ANP. A cross-sectional study was performed on nonelite runners scheduled to participate in the 2010 Grand Prix of Bern, a 10-mile race. Four hundred ninety-two marathon and nonmarathon runners applied for participation, 70 were randomly selected, and 56 entered the final analysis. Subjects were stratified according to former marathon participations: a control group (nonmarathon runners, n = 22), group 1 (1 to 4 marathons, n = 16), and group 2 (≥5 marathons, n = 18). Results were adjusted for age, training years, and average weekly endurance training hours. The mean age was 42 ± 7 years. Compared to the control group, marathon runners in groups 1 and 2 had larger left atria (25 ± 6 vs 30 ± 6 vs 34 ± 7 ml/m(2), p = 0.002) and larger right atria (27 ± 7 vs 31 ± 8 vs 35 ± 5 ml/m(2), p = 0.024). Pro-ANP levels at baseline were higher in marathon runners (1.04 ± 0.38 vs 1.42 ± 0.74 vs 1.67 ± 0.69 nmol/L, p = 0.006). Pro-ANP increased significantly in all groups after the race. In multiple linear regression analysis, marathon participation was an independent predictor of left atrial (β = 0.427, p <0.001) and right atrial (β = 0.395, p = 0.006) remodeling. In conclusion, marathon running was associated with progressive left and right atrial remodeling, possibly induced by repetitive episodes of atrial stretching. The altered left and right atrial substrate may facilitate atrial arrhythmias.