10 resultados para Combustion chambers
em BORIS: Bern Open Repository and Information System - Berna - Suiça
Resumo:
OBJECTIVE: Autopsy determination of fatal hemorrhage as the cause of death is often a difficult diagnosis in forensic medicine. No quantitative system for accurately measuring the blood volume in a corpse has been developed. MATERIALS AND METHODS: This article describes the measurement and evaluation of the cross-sectional areas of major blood vessels, of the diameter of the right pulmonary artery, of the volumes of thoracic aorta and spleen on MDCT, and of the volumes of heart chambers on MRI in 65 autopsy-verified cases of fatal hemorrhage or no fatal hemorrhage. RESULTS: Most cases with a cause of death of "fatal hemorrhage" had collapsed vessels. The finding of a collapsed superior vena cava, main pulmonary artery, or right pulmonary artery was 100% specific for fatal hemorrhage. The mean volumes of the thoracic aorta and of each of the heart chambers and the mean cross-sectional areas of all vessels except the inferior vena cava and abdominal aorta were significantly smaller in fatal hemorrhage than in no fatal hemorrhage. CONCLUSION: For the quantitative differentiation of fatal hemorrhage from other causes of death, we propose a three-step algorithm with measurements of the diameter of the right pulmonary artery, the cross-sectional area of the main pulmonary artery, and the volume of the right atrium (specificity, 100%; sensitivity, 95%). However, this algorithm must be corroborated in a prospective study, which would eliminate the limitations of this study. Quantitative postmortem cross-sectional imaging might become a reliable objective method to assess the question of fatal hemorrhage in forensic medicine.
Resumo:
Evidence from epidemiological studies indicates that acute exposure to airborne pollutants is associated with an increased risk of morbidity and mortality attributed to cardiovascular diseases. The present study investigated the effects of combustion-derived ultrafine particles (diesel exhaust particles) as well as engineered nanoparticles (titanium dioxide and single-walled carbon nanotubes) on impulse conduction characteristics, myofibrillar structure and the formation of reactive oxygen species in patterned growth strands of neonatal rat ventricular cardiomyocytes in vitro. Diesel exhaust particles as well as titanium dioxide nanoparticles showed the most pronounced effects. We observed a dose-dependent change in heart cell function, an increase in reactive oxygen species and, for titanium dioxide, we also found a less organized myofibrillar structure. The mildest effects were observed for single-walled carbon nanotubes, for which no clear dose-dependent alterations of theta and dV/dt(max) could be determined. In addition, there was no increase in oxidative stress and no change in the myofibrillar structure. These results suggest that diesel exhaust as well as titanium dioxide particles and to a lesser extent also single-walled carbon nanotubes can directly induce cardiac cell damage and can affect the function of the cells.
Resumo:
Alternative fuels are increasingly combusted in diesel- and gasoline engines and the contribution of such exhausts to the overall air pollution is on the rise. Recent findings on the possible adverse effects of biodiesel exhaust are contradictive, at least partly resulting from the various fuel qualities, engine types and different operation conditions that were tested. However, most of the studies are biased by undesired interactions between the exhaust samples and biological culture media. We here report how complete, freshly produced exhausts from fossil diesel (B0), from a blend of 20% rapeseed-methyl ester (RME) and 80% fossil diesel (B20) and from pure rapeseed methyl ester (B100) affect a complex 3D cellular model of the human airway epithelium in vitro by exposing the cells at the air–liquid interface. The induction of pro-apoptotic and necrotic cell death, cellular morphology, oxidative stress, and pro-inflammatory responses were assessed. Compared to B0 exhaust, B20 exhaust decreased oxidative stress and pro-inflammatory responses, whereas B100 exhaust, depending on exposure duration, decreased oxidative stress but increased pro-inflammatory responses. The effects are only very weak and given the compared to fossil diesel higher ecological sustainability of biodiesel, it appears that – at least RME – can be considered a valuable alternative to pure fossil diesel.
Resumo:
A number of liquid argon time projection chambers (LAr TPCs) are being built or are proposed for neutrino experiments on long- and short baseline beams. For these detectors, a distortion in the drift field due to geometrical or physics reasons can affect the reconstruction of the events. Depending on the TPC geometry and electric drift field intensity, this distortion could be of the same magnitude as the drift field itself. Recently, we presented a method to calibrate the drift field and correct for these possible distortions. While straight cosmic ray muon tracks could be used for calibration, multiple coulomb scattering and momentum uncertainties allow only a limited resolution. A UV laser instead can create straight ionization tracks in liquid argon, and allows one to map the drift field along different paths in the TPC inner volume. Here we present a UV laser feed-through design with a steerable UV mirror immersed in liquid argon that can point the laser beam at many locations through the TPC. The straight ionization paths are sensitive to drift field distortions, a fit of these distortion to the linear optical path allows to extract the drift field, by using these laser tracks along the whole TPC volume one can obtain a 3D drift field map. The UV laser feed-through assembly is a prototype of the system that will be used for the MicroBooNE experiment at the Fermi National Accelerator Laboratory (FNAL).
Resumo:
The study focuses on gender norms and practices in Chinese Christian communities established by Jesuit missionary activity during the long seventeenth century. It analyzes how European and Chinese gender norms and practices affected each other in the context of the Sino-Western cultural contact initiated by the missionaries. The thesis consists of two parts. First, it analyzes the ways in which European Jesuits engaged with Chinese gender relations in the course of their mission in China. The study demonstrates that the Jesuits’ adoption of the Chinese scholar-gentry’s habitus entailed a partial adaptation to Confucian gender norms. The latter placed great emphasis on gender segregation and therefore discouraged direct communication between missionaries and Chinese women. This resulted in the emergence of organizational and devotional arrangements of Christian communities specific to China. Second, the study discusses Chinese Christian women's religious culture that emerged in the absence of a strong missionary presence among female devotees. It points out that Chinese Christian women created their own ritual culture and religious sociability in the domestic context, and that they actively took part in shaping Chinese Christianity as masters of domestic rituals.
Resumo:
We report the synthesis and characterization of colored ZnO-based powders via solution combustion reaction of urea and zinc nitrate hexahydrate in varying molar ratios between 1:1 and 10:1. Among other techniques, we employ X-ray diffraction, nuclear magnetic resonance, and Raman spectroscopy to characterize the products. Within a narrow range of reactant ratios, we reproducibly find an unidentified, crystalline precursor phase related to isocyanuric acid next to ZnO. Finally, we complement our investigations by performing Prompt Gamma Activation Analysis (PGAA) on selected products in order to directly determine elemental bulk compositions and compare these with X-ray photoelectron spectroscopy (XPS) measurements. Our data show traces of nitrogen mainly on the surface of the particles, and thus we question the solution combustion method as a reliable synthesis toward N-doped ZnO. Furthermore, we exclude nitrogen as being responsible for the appearance of the four controversially discussed Raman bands superimposed onto the spectrum of pure ZnO (at 275, 510, 582, and 643 cm–1) and show that the combination of PGAA and XPS is an excellent and complementary method to obtain information about the distribution of the elements in question.
Resumo:
Segmented ionization chambers represent a good solution to monitor the position, the intensity and the shape of ion beams in hadrontherapy. Pixel and strip chambers have been developed for both passive scattering and active scanning dose delivery systems. In particular, strip chambers are optimal for pencil beam scanning, allowing for spatial and time resolutions below 0.1 mm and 1 ms, respectively. The MATRIX pixel and the Strip Accurate Monitor for Beam Applications (SAMBA) detectors are described in this paper together with the results of several beam tests and industrial developments based on these prototypes.