8 resultados para Combustion Ignition
em BORIS: Bern Open Repository and Information System - Berna - Suiça
Resumo:
Evidence from epidemiological studies indicates that acute exposure to airborne pollutants is associated with an increased risk of morbidity and mortality attributed to cardiovascular diseases. The present study investigated the effects of combustion-derived ultrafine particles (diesel exhaust particles) as well as engineered nanoparticles (titanium dioxide and single-walled carbon nanotubes) on impulse conduction characteristics, myofibrillar structure and the formation of reactive oxygen species in patterned growth strands of neonatal rat ventricular cardiomyocytes in vitro. Diesel exhaust particles as well as titanium dioxide nanoparticles showed the most pronounced effects. We observed a dose-dependent change in heart cell function, an increase in reactive oxygen species and, for titanium dioxide, we also found a less organized myofibrillar structure. The mildest effects were observed for single-walled carbon nanotubes, for which no clear dose-dependent alterations of theta and dV/dt(max) could be determined. In addition, there was no increase in oxidative stress and no change in the myofibrillar structure. These results suggest that diesel exhaust as well as titanium dioxide particles and to a lesser extent also single-walled carbon nanotubes can directly induce cardiac cell damage and can affect the function of the cells.
Resumo:
Alternative fuels are increasingly combusted in diesel- and gasoline engines and the contribution of such exhausts to the overall air pollution is on the rise. Recent findings on the possible adverse effects of biodiesel exhaust are contradictive, at least partly resulting from the various fuel qualities, engine types and different operation conditions that were tested. However, most of the studies are biased by undesired interactions between the exhaust samples and biological culture media. We here report how complete, freshly produced exhausts from fossil diesel (B0), from a blend of 20% rapeseed-methyl ester (RME) and 80% fossil diesel (B20) and from pure rapeseed methyl ester (B100) affect a complex 3D cellular model of the human airway epithelium in vitro by exposing the cells at the air–liquid interface. The induction of pro-apoptotic and necrotic cell death, cellular morphology, oxidative stress, and pro-inflammatory responses were assessed. Compared to B0 exhaust, B20 exhaust decreased oxidative stress and pro-inflammatory responses, whereas B100 exhaust, depending on exposure duration, decreased oxidative stress but increased pro-inflammatory responses. The effects are only very weak and given the compared to fossil diesel higher ecological sustainability of biodiesel, it appears that – at least RME – can be considered a valuable alternative to pure fossil diesel.
Resumo:
We report the synthesis and characterization of colored ZnO-based powders via solution combustion reaction of urea and zinc nitrate hexahydrate in varying molar ratios between 1:1 and 10:1. Among other techniques, we employ X-ray diffraction, nuclear magnetic resonance, and Raman spectroscopy to characterize the products. Within a narrow range of reactant ratios, we reproducibly find an unidentified, crystalline precursor phase related to isocyanuric acid next to ZnO. Finally, we complement our investigations by performing Prompt Gamma Activation Analysis (PGAA) on selected products in order to directly determine elemental bulk compositions and compare these with X-ray photoelectron spectroscopy (XPS) measurements. Our data show traces of nitrogen mainly on the surface of the particles, and thus we question the solution combustion method as a reliable synthesis toward N-doped ZnO. Furthermore, we exclude nitrogen as being responsible for the appearance of the four controversially discussed Raman bands superimposed onto the spectrum of pure ZnO (at 275, 510, 582, and 643 cm–1) and show that the combination of PGAA and XPS is an excellent and complementary method to obtain information about the distribution of the elements in question.
Resumo:
Five test runs were performed to assess possible bias when performing the loss on ignition (LOI) method to estimate organic matter and carbonate content of lake sediments. An accurate and stable weight loss was achieved after 2 h of burning pure CaCO3 at 950 °C, whereas LOI of pure graphite at 530 °C showed a direct relation to sample size and exposure time, with only 40-70% of the possible weight loss reached after 2 h of exposure and smaller samples losing weight faster than larger ones. Experiments with a standardised lake sediment revealed a strong initial weight loss at 550 °C, but samples continued to lose weight at a slow rate at exposure of up to 64 h, which was likely the effect of loss of volatile salts, structural water of clay minerals or metal oxides, or of inorganic carbon after the initial burning of organic matter. A further test-run revealed that at 550 °C samples in the centre of the furnace lost more weight than marginal samples. At 950 °C this pattern was still apparent but the differences became negligible. Again, LOI was dependent on sample size. An analytical LOI quality control experiment including ten different laboratories was carried out using each laboratory's own LOI procedure as well as a standardised LOI procedure to analyse three different sediments. The range of LOI values between laboratories measured at 550 °C was generally larger when each laboratory used its own method than when using the standard method. This was similar for 950 °C, although the range of values tended to be smaller. The within-laboratory range of LOI measurements for a given sediment was generally small. Comparisons of the results of the individual and the standardised method suggest that there is a laboratory-specific pattern in the results, probably due to differences in laboratory equipment and/or handling that could not be eliminated by standardising the LOI procedure. Factors such as sample size, exposure time, position of samples in the furnace and the laboratory measuring affected LOI results, with LOI at 550 °C being more susceptible to these factors than LOI at 950 °C. We, therefore, recommend analysts to be consistent in the LOI method used in relation to the ignition temperatures, exposure times, and the sample size and to include information on these three parameters when referring to the method.