6 resultados para Combining method

em BORIS: Bern Open Repository and Information System - Berna - Suiça


Relevância:

30.00% 30.00%

Publicador:

Resumo:

Genetic evidence indicates that the major gelatinases MMP-2 and MMP-9 are involved in mammalian craniofacial development. Since these matrix metalloproteinases are secreted as proenzymes that require activation, their tissue distribution does not necessarily reflect the sites of enzymatic activity. Information regarding the spatial and temporal expression of gelatinolytic activity in the head of the mammalian embryo is sparse. Sensitive in situ zymography with dye-quenched gelatin (DQ-gelatin) has been introduced recently; gelatinolytic activity results in a local increase in fluorescence. Using frontal sections of wild-type mouse embryo heads from embryonic day 14.5-15.5, we optimized and validated a simple double-labeling in situ technique for combining DQ-gelatin zymography with immunofluorescence staining. MMP inhibitors were tested to confirm the specificity of the reaction in situ, and results were compared to standard SDS-gel zymography of tissue extracts. Double-labeling was used to show the spatial relationship in situ between gelatinolytic activity and immunostaining for gelatinases MMP-2 and MMP-9, collagenase 3 (MMP-13) and MT1-MMP (MMP-14), a major activator of pro-gelatinases. Strong gelatinolytic activity, which partially overlapped with MMP proteins, was confirmed for Meckel's cartilage and developing mandibular bone. In addition, we combined in situ zymography with immunostaining for extracellular matrix proteins that are potential gelatinase substrates. Interestingly, gelatinolytic activity colocalized precisely with laminin-positive basement membranes at specific sites around growing epithelia in the developing mouse head, such as the ducts of salivary glands or the epithelial fold between tongue and lower jaw region. Thus, this sensitive method allows to associate, with high spatial resolution, gelatinolytic activity with epithelial morphogenesis in the embryo.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

AIMS: Although an added diagnostic and prognostic value of the global coronary artery calcification (CAC) score as an adjunct to single-photon emission computed tomography (SPECT)-myocardial perfusion image (MPI) has been repeatedly documented, none of the previous studies took advantage of the anatomic information provided by the unenhanced cardiac CT. Therefore, no co-registration has so far been used to match a myocardial perfusion defect with calcifications in the subtending coronary artery. To evaluate the prognostic value of integrating SPECT-MPI with CAC images were obtained from non-enhanced cardiac computed tomography (CT) for attenuation correction to predict major adverse cardiac events (MACE). METHODS AND RESULTS: Follow-up was obtained in 462 patients undergoing a 1-day stress/rest (99m)Tc-teterofosmin SPECT and non-enhanced cardiac CT for attenuation correction. Survival free of MACE was determined using the Kaplan-Meier method. After integrating MPI and CT findings, patients were divided into three groups (i) MPI defect matched by calcification (CAC ≥ 1) in the subtending coronary artery (ii) unmatched MPI and CT finding (iii) normal finding by MPI and CT. At a mean follow-up of 34.5 ± 13 months, a MACE was observed in 80 patients (33 death, 6 non-fatal myocardial infarction, 9 hospitalizations due to unstable angina, and 32 revascularizations). Survival analysis revealed the most unfavourable outcome (P < 0.001 log-rank test) for patients with a matched finding. CONCLUSION: In the present study, a novel approach using a combined integration of cardiac SPECT-CAC imaging allows for refined risk stratification, as a matched defect emerged as an independent predictor of MACE.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

OBJECTIVE Cognitive impairments are regarded as a core component of schizophrenia. However, the cognitive dimension of psychosis is hardly considered by ultra-high risk (UHR) criteria. Therefore, we studied whether the combination of symptomatic UHR criteria and the basic symptom criterion "cognitive disturbances" (COGDIS) is superior in predicting first-episode psychosis. METHOD In a naturalistic 48-month follow-up study, the conversion rate to first-episode psychosis was studied in 246 outpatients of an early detection of psychosis service (FETZ); thereby, the association between conversion, and the combined and singular use of UHR criteria and COGDIS was compared. RESULTS Patients that met UHR criteria and COGDIS (n=127) at baseline had a significantly higher risk of conversion (hr=0.66 at month 48) and a shorter time to conversion than patients that met only UHR criteria (n=37; hr=0.28) or only COGDIS (n=30; hr=0.23). Furthermore, the risk of conversion was higher for the combined criteria than for UHR criteria (n=164; hr=0.56 at month 48) and COGDIS (n=158; hr=0.56 at month 48) when considered irrespective of each other. CONCLUSIONS Our findings support the merits of considering both COGDIS and UHR criteria in the early detection of persons who are at high risk of developing a first psychotic episode within 48months. Applying both sets of criteria improves sensitivity and individual risk estimation, and may thereby support the development of stage-targeted interventions. Moreover, since the combined approach enables the identification of considerably more homogeneous at-risk samples, it should support both preventive and basic research.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Phase-sensitive X-ray imaging shows a high sensitivity towards electron density variations, making it well suited for imaging of soft tissue matter. However, there are still open questions about the details of the image formation process. Here, a framework for numerical simulations of phase-sensitive X-ray imaging is presented, which takes both particle- and wave-like properties of X-rays into consideration. A split approach is presented where we combine a Monte Carlo method (MC) based sample part with a wave optics simulation based propagation part, leading to a framework that takes both particle- and wave-like properties into account. The framework can be adapted to different phase-sensitive imaging methods and has been validated through comparisons with experiments for grating interferometry and propagation-based imaging. The validation of the framework shows that the combination of wave optics and MC has been successfully implemented and yields good agreement between measurements and simulations. This demonstrates that the physical processes relevant for developing a deeper understanding of scattering in the context of phase-sensitive imaging are modelled in a sufficiently accurate manner. The framework can be used for the simulation of phase-sensitive X-ray imaging, for instance for the simulation of grating interferometry or propagation-based imaging.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Continuous theta burst stimulation (cTBS) represents a promising approach in the treatment of neglect syndrom. However, it is not known whether cTBS in conjunction with another technique may enhance the therapeutic effects. In the present sham-controlled study, we aimed to combine cTBS with smooth pursuit training (SPT), another method known to effectively improve neglect symptoms, and to evaluate whether this combination would result in a stronger effect than SPT alone. Eighteen patients with left spatial neglect after right-hemispheric stroke were included in the study and performed a cancellation task on a large 54.6" touchscreen monitor. A sequential application of cTBS and SPT induced a significantly greater improvement of neglect than SPT alone. After the combined application of these two methods, patients detected significantly more targets and their cancellation behaviour presented a significantly greater shift towards the contralesional hemispace. We suggest that a combined, sequential application of cTBS and SPT is a promising new approach to treat neglect.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Pencil beam scanned (PBS) proton therapy has many advantages over conventional radiotherapy, but its effectiveness for treating mobile tumours remains questionable. Gating dose delivery to the breathing pattern is a well-developed method in conventional radiotherapy for mitigating tumour-motion, but its clinical efficiency for PBS proton therapy is not yet well documented. In this study, the dosimetric benefits and the treatment efficiency of beam gating for PBS proton therapy has been comprehensively evaluated. A series of dedicated 4D dose calculations (4DDC) have been performed on 9 different 4DCT(MRI) liver data sets, which give realistic 4DCT extracting motion information from 4DMRI. The value of 4DCT(MRI) is its capability of providing not only patient geometries and deformable breathing characteristics, but also includes variations in the breathing patterns between breathing cycles. In order to monitor target motion and derive a gating signal, we simulate time-resolved beams' eye view (BEV) x-ray images as an online motion surrogate. 4DDCs have been performed using three amplitude-based gating window sizes (10/5/3 mm) with motion surrogates derived from either pre-implanted fiducial markers or the diaphragm. In addition, gating has also been simulated in combination with up to 19 times rescanning using either volumetric or layered approaches. The quality of the resulting 4DDC plans has been quantified in terms of the plan homogeneity index (HI), total treatment time and duty cycle. Results show that neither beam gating nor rescanning alone can fully retrieve the plan homogeneity of the static reference plan. Especially for variable breathing patterns, reductions of the effective duty cycle to as low as 10% have been observed with the smallest gating rescanning window (3 mm), implying that gating on its own for such cases would result in much longer treatment times. In addition, when rescanning is applied on its own, large differences between volumetric and layered rescanning have been observed as a function of increasing number of re-scans. However, once gating and rescanning is combined, HI to within 2% of the static plan could be achieved in the clinical target volume, with only moderately prolonged treatment times, irrespective of the rescanning strategy used. Moreover, these results are independent of the motion surrogate used. In conclusion, our results suggest image guided beam gating, combined with rescanning, is a feasible, effective and efficient motion mitigation approach for PBS-based liver tumour treatments.