3 resultados para Colony development

em BORIS: Bern Open Repository and Information System - Berna - Suiça


Relevância:

40.00% 40.00%

Publicador:

Resumo:

OBJECTIVE To investigate the effects of interleukin-17A (IL-17A) on osteoclastogenesis in vitro. METHODS Bone marrow cells (BMCs) were isolated from the excised tibia and femora of wild-type C57BL/6J mice, and osteoblasts were obtained by sequential digestion of the calvariae of ddY, C57BL/6J, and granulocyte-macrophage colony-stimulating factor-knockout (GM-CSF(-/-)) mice. Monocultures of BMCs or cocultures of BMCs and osteoblasts were supplemented with or without 1,25-dihydroxyvitamin D(3)(1,25[OH](2)D(3)), recombinant human macrophage colony-stimulating factor (M-CSF), RANKL, and IL-17A. After 5-6 days, the cultures were fixed with 4% paraformaldehyde and subsequently stained for the osteoclast marker enzyme tartrate-resistant acid phosphatase (TRAP). Osteoprotegerin (OPG) and GM-CSF expression were measured by enzyme-linked immunosorbent assay, and transcripts for RANK and RANKL were detected by real-time polymerase chain reaction. RESULTS In both culture systems, IL-17A alone did not affect the development of osteoclasts. However, the addition of IL-17A plus 1,25(OH)(2)D(3) to cocultures inhibited early osteoclast development within the first 3 days of culture and induced release of GM-CSF into the culture supernatants. Furthermore, in cocultures of GM-CSF(-/-) mouse osteoblasts and wild-type mouse BMCs, IL-17A did not affect osteoclast development, corroborating the role of GM-CSF as the mediator of the observed inhibition of osteoclastogenesis by IL-17A. CONCLUSION These findings suggest that IL-17A interferes with the differentiation of osteoclast precursors by inducing the release of GM-CSF from osteoblasts.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Inflammatory cytokines such as tumor necrosis factor-alpha (TNFα) are potent stimulators of osteoclast formation and bone resorption and are frequently associated with pathologic bone metabolism. The cytokine exerts specific effects on its target cells and constitutes a part of the cellular microenvironment. Previously, TNFα was demonstrated to inhibit the development of osteoclasts in vitro via an osteoblast-mediated pathway. In the present study, the molecular mechanisms of the inhibition of osteoclastogenesis were investigated in co-cultures of osteoblasts and bone marrow cells (BMC) and in cultures of macrophage-colony stimulating factor (M-CSF) dependent, non-adherent osteoclast progenitor cells (OPC) grown with M-CSF and receptor activator of NF-κB ligand (RANKL). Granulocyte-macrophage colony stimulating factor (GM-CSF), a known inhibitor of osteoclastogenesis was found to be induced in osteoblasts treated with TNFα and the secreted protein accumulated in the supernatant. Dexamethasone (Dex), an anti-inflammatory steroid, caused a decrease in GM-CSF expression, leading to partial recovery of osteoclast formation. Flow cytometry analysis revealed that in cultures of OPC, supplemented with 10% conditioned medium (CM) from osteoblasts treated with TNFα/1,25(OH)(2)D(3), expression of RANK and CD11c was suppressed. The decrease in RANK expression may be explained by the finding, that GM-CSF and the CM from wt osteoblasts were found to suppress the expression of c-Fos, Fra-1, and Nfatc-1. The failure of OPC to develop into CD11c(+) dendritic cells suggests that cell development is not deviated to an alternative differentiation pathway, but rather, that the monocytes are maintained in an undifferentiated, F4/80(+), state. The data further implies possible interactions among inflammatory cytokines. GM-CSF induced by TNFα acts on early hematopoietic precursors, inhibiting osteoclastogenesis while acting as the growth factor for M-CSF independent inflammatory macrophages. These in turn may condition a microenvironment enhancing osteoclast differentiation and bone resorption upon migration of the OPC from circulation to the bone/bone marrow compartment.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

With the aim of characterizing specific immunogenic proteins of Mycoplasma mycoides subsp. mycoides small colony (SC) type, the aetiological agent of contagious bovine pleuropneumonia, a gene encoding a major immunogenic protein of 72 kDa named P72 was cloned and expressed in Escherichia coli. The expressed protein was of the same apparent molecular mass as that produced by the parent strain. The predicted molecular mass of P72, based on the DNA-deduced amino acid sequence, was 61.118 kDa, significantly lower than the apparent molecular mass of endogenous or recombinant P72 on SDS-PAGE. Analysis of the amino acid sequence revealed a typical prokaryotic signal peptidase II-membrane lipoprotein lipid attachment site and a transmembrane structure domain in the leader sequence at the amino-terminal end of the protein. P72 was shown to be a lipoprotein and its surface location was confirmed by trypsin treatment of whole cells. An unassigned gene encoding a peptide with some similarity to P72 was found on the genome sequence of M. capricolum subsp. capricolum but not on that of Mycoplasma genitalium. The P72 gene was detected in 11/11 M. mycoides subsp. mycoides SC strains. Antiserum against recombinant P72 reacted strongly with 12/12 strains of M. mycoides subsp. mycoides SC, weakly with Mycoplasma bovine group 7 strain PG50, but not with other members of the 'mycoides cluster' or closely related mycoplasmas. Cows experimentally contact-infected with M. mycoides subsp. mycoides SC developed a humoral response against P72 within 35 d. P72 is a specific antigenic membrane lipoprotein of M. mycoides subsp. mycoides SC with potential for use in development of diagnostic reagents. It seems to belong to a family of lipoproteins of the "mycoides cluster'.