10 resultados para Collimated transmittance
em BORIS: Bern Open Repository and Information System - Berna - Suiça
Resumo:
The verification possibilities of dynamically collimated treatment beams with a scanning liquid ionization chamber electronic portal image device (SLIC-EPID) are investigated. The ion concentration in the liquid of a SLIC-EPID and therefore the read-out signal is determined by two parameters of a differential equation describing the creation and recombination of the ions. Due to the form of this equation, the portal image detector describes a nonlinear dynamic system with memory. In this work, the parameters of the differential equation were experimentally determined for the particular chamber in use and for an incident open 6 MV photon beam. The mathematical description of the ion concentration was then used to predict portal images of intensity-modulated photon beams produced by a dynamic delivery technique, the sliding window approach. Due to the nature of the differential equation, a mathematical condition for 'reliable leaf motion verification' in the sliding window technique can be formulated. It is shown that the time constants for both formation and decay of the equilibrium concentration in the chamber is in the order of seconds. In order to guarantee reliable leaf motion verification, these time constants impose a constraint on the rapidity of the image-read out for a given maximum leaf speed. For a leaf speed of 2 cm s(-1), a minimum image acquisition frequency of about 2 Hz is required. Current SLIC-EPID systems are usually too slow since they need about a second to acquire a portal image. However, if the condition is fulfilled, the memory property of the system can be used to reconstruct the leaf motion. It is shown that a simple edge detecting algorithm can be employed to determine the leaf positions. The method is also very robust against image noise.
Resumo:
The generation of collimated electron beams from metal double-gate nanotip arrays excited by near infrared laser pulses is studied. Using electromagnetic and particle tracking simulations, we showed that electron pulses with small rms transverse velocities are efficiently produced from nanotip arrays by laser-induced field emission with the laser wavelength tuned to surface plasmon polariton resonance of the stacked double-gate structure. The result indicates the possibility of realizing a metal nanotip array cathode that outperforms state-of-the-art photocathodes.
Resumo:
During the past decade microbeam radiation therapy has evolved from preclinical studies to a stage in which clinical trials can be planned, using spatially fractionated, highly collimated and high intensity beams like those generated at the x-ray ID17 beamline of the European Synchrotron Radiation Facility. The production of such microbeams typically between 25 and 100 microm full width at half maximum (FWHM) values and 100-400 microm center-to-center (c-t-c) spacings requires a multislit collimator either with fixed or adjustable microbeam width. The mechanical regularity of such devices is the most important property required to produce an array of identical microbeams. That ensures treatment reproducibility and reliable use of Monte Carlo-based treatment planning systems. New high precision wire cutting techniques allow the fabrication of these collimators made of tungsten carbide. We present a variable slit width collimator as well as a single slit device with a fixed setting of 50 microm FWHM and 400 microm c-t-c, both able to cover irradiation fields of 50 mm width, deemed to meet clinical requirements. Important improvements have reduced the standard deviation of 5.5 microm to less than 1 microm for a nominal FWHM value of 25 microm. The specifications of both devices, the methods used to measure these characteristics, and the results are presented.
Resumo:
We present a search for a light (mass < 2 GeV) boson predicted by Hidden Valley supersymmetric models that decays into a final state consisting of collimated muons or electrons, denoted "lepton-jets". The analysis uses 5 fb(-1) of root s = 7 TeV proton-proton collision data recorded by the ATLAS detector at the Large Hadron Collider to search for the following signatures: single lepton-jets with at least four muons; pairs of lepton-jets, each with two or more muons; and pairs of lepton-jets with two or more electrons. This study finds no statistically significant deviation from the Standard Model prediction and places 95% confidence-level exclusion limits on the production cross section times branching ratio of light bosons for several parameter sets of a Hidden Valley model.
Resumo:
A search is performed for collimated muon pairs displaced from the primary vertex produced in the decay of long-lived neutral particles in proton-proton collisions at root s = 7 TeV centre-of-mass energy, with the ATLAS detector at the LHC. In a 1.9 fb(-1) event sample collected during 2011, the observed data are consistent with the Standard Model background expectations. Limits on the product of the production cross section and the branching ratio of a Higgs boson decaying to hidden-sector neutral long-lived particles are derived as a function of the particles' mean lifetime.
Resumo:
A search is performed for WH production with a light Higgs boson decaying to hidden-sector particles resulting in clusters of collimated electrons, known as electron-jets. The search is performed with 2.04 fb(-1) of data collected in 2011 with the ATLAS detector at the Large Hadron Collider in proton-proton collisions at root s = 7 TeV. One event satisfying the signal selection criteria is observed, which is consistent with the expected background rate. Limits on the product of the WH production cross section and the branching ratio of a Higgs boson decaying to prompt electron-jets are calculated as a function of a Higgs boson mass in the range from 100 to 140 GeV.
Resumo:
Several models of physics beyond the Standard Model predict neutral particles that decay into final states consisting of collimated jets of light leptons and hadrons (socalled “lepton jets”). These particles can also be long-lived with decay length comparable to, or even larger than, the LHC detectors’ linear dimensions. This paper presents the results of a search for lepton jets in proton-proton collisions at the centre-of-mass energy of √s = 8TeV in a sample of 20.3 fb−1 collected during 2012 with the ATLAS detector at the LHC. Limits on models predicting Higgs boson decays to neutral long-lived lepton jets are derived as a function of the particle’s proper decay length.
Resumo:
Stable isotope ratios of nitrate preserved in deep ice cores are expected to provide unique and valuable information regarding paleoatmospheric processes. However, due to the post-depositional loss of nitrate in snow, this information may be erased or significantly modified by physical or photochemical processes before preservation in ice. We investigated the role of solar UV photolysis in the post-depositional modification of nitrate mass and stable isotoperatios at Dome C, Antarctica, during the austral summer of 2011/2012. Two 30 cm snow pits were filled with homogenized drifted snow from the vicinity of the base. One of these pits was covered with a plexiglass plate that transmits solar UV radiation, while the other was covered with a different plexiglass plate having a low UV transmittance. Samples were then collected from each pit at a 2–5 cm depth resolution and a 10-day frequency. At the end of the season, acomparable nitrate mass loss was observed in both pits for the top-level samples (0–7 cm) attributed to mixing with the surrounding snow. After excluding samples impacted by the mixing process, we derived an average apparent nitrogen isotopic fractionation (15" app/of role in driving the isotopic fractionation of nitrate in snow.We have estimated a purely photolytic nitrogen isotopic fractionation (15"photo) of -55.8 12.0 ‰ from the difference in the derived apparent isotopic ractionations of the two experimental fields, as both pits were exposed to similar physical processes except exposure to solar UV. This value is in close agreement with the 15" photo value of -47.9 6.8 ‰ derived in a laboratory experiment simulated for Dome C conditions (Berhanu et al., 2014). We have also observed an insensitivity of 15" with depth in the snowpack under the given experimental setup. This is due to the uniform attenuation of incoming solar UV by snow, as 15" is strongly dependent on the spectral distribution of the incoming light flux. Together with earlier work, the results presented here represent a strong body of evidence that solar UV photolysis is the most relevant post-depositional process modifying the stable isotope ratios of snow nitrate at low-accumulation sites, where many deep ice cores are drilled. Nevertheless, modeling the loss of nitrate in snow is still required before a robust interpretation of ice core records can be provided.
Resumo:
Comets often display narrow dust jets but more diffuse gas comae when their eccentric orbits bring them into the inner solar system and sunlight sublimates the ice on the nucleus. Comets are also understood to have one or more active areas covering only a fraction of the total surface active with sublimating volatile ices. Calculations of the gas and dust distribution from a small active area on a comet’s nucleus show that as the gas moves out radially into the vacuum of space it expands tangentially, filling much of the hemisphere centered on the active region. The dust dragged by the gas remains more concentrated over the active area. This explains some puzzling appearances of comets having collimated dust jets but more diffuse gaseous atmospheres. Our test case is 67P/Churyumov–Gerasimenko, the Rosetta mission target comet, whose activity is dominated by a single area covering only 4% of its surface.
Resumo:
Context. Dust jets (i.e., fuzzy collimated streams of cometary material arising from the nucleus) have been observed in situ on all comets since the Giotto mission flew by comet 1P/Halley in 1986, and yet their formation mechanism remains unknown. Several solutions have been proposed involving either specific properties of the active areas or the local topography to create and focus the gas and dust flows. While the nucleus morphology seems to be responsible for the larger features, high resolution imagery has shown that broad streams are composed of many smaller jets (a few meters wide) that connect directly to the nucleus surface. Aims. We monitored these jets at high resolution and over several months to understand what the physical processes are that drive their formation and how this affects the surface. Methods. Using many images of the same areas with different viewing angles, we performed a 3-dimensional reconstruction of collimated jets and linked them precisely to their sources on the nucleus. Results. We show here observational evidence that the northern hemisphere jets of comet 67P/Churyumov-Gerasimenko arise from areas with sharp topographic changes and describe the physical processes involved. We propose a model in which active cliffs are the main source of jet-like features and therefore of the regions eroding the fastest on comets. We suggest that this is a common mechanism taking place on all comets.