3 resultados para Coldenia gris
em BORIS: Bern Open Repository and Information System - Berna - Suiça
Resumo:
Using simulated climate data from the comprehensive coupled climate model IPSL CM4, we simulate the Greenland ice sheet (GrIS) during the Eemian interglaciation with the three-dimensional ice sheet model SICOPOLIS. The Eemian is a period 126 000 yr before present (126 ka) with Arctic temperatures comparable to projections for the end of this century. In our simulation, the northeastern part of the GrIS is unstable and retreats significantly, despite moderate melt rates. This result is found to be robust to perturbations within a wide parameter space of key parameters of the ice sheet model, the choice of initial ice temperature, and has been reproduced with climate forcing from a second coupled climate model, the CCSM3. It is shown that the northeast GrIS is the most vulnerable. Even a small increase in melt removes many years of ice accumulation, giving a large mass imbalance and triggering the strong ice-elevation feedback. Unlike the south and west, melting in the northeast is not compensated by high accumulation. The analogy with modern warming suggests that in coming decades, positive feedbacks could increase the rate of mass loss of the northeastern GrIS, exceeding the recent observed thinning rates in the south.
Resumo:
Acute administration of a mononclonal antibody (mAb) raised against the CD11d subunit of the leukocyte CD11d/CD18 integrin after spinal cord injury (SCI) in the rat greatly improves neurological outcomes. We have profiled gene expression in anti-CD11d and isotyped-matched control mAb-treated rats after SCI. Microarray analysis demonstrated reduced expression of pro-inflammatory cytokines and increased expression of inflammatory mediators that promote wound healing and the expression of scar proteins predicted to improve nerve growth. These changes in gene expression may reflect changes in the types of macrophages that populate the lesions in anti-CD11d mAb-treated rats.
Resumo:
The influence of a reduced Greenland Ice Sheet (GrIS) on Greenland's surface climate during the Eemian interglacial is studied using a set of simulations with different GrIS realizations performed with a comprehensive climate model. We find a distinct impact of changes in the GrIS topography on Greenland's surface air temperatures (SAT) even when correcting for changes in surface elevation, which influences SAT through the lapse rate effect. The resulting lapse-rate-corrected SAT anomalies are thermodynamically driven by changes in the local surface energy balance rather than dynamically caused through anomalous advection of warm/cold air masses. The large-scale circulation is indeed very stable among all sensitivity experiments and the Northern Hemisphere (NH) flow pattern does not depend on Greenland's topography in the Eemian. In contrast, Greenland's surface energy balance is clearly influenced by changes in the GrIS topography and this impact is seasonally diverse. In winter, the variable reacting strongest to changes in the topography is the sensible heat flux (SHF). The reason is its dependence on surface winds, which themselves are controlled to a large extent by the shape of the GrIS. Hence, regions where a receding GrIS causes higher surface wind velocities also experience anomalous warming through SHF. Vice-versa, regions that become flat and ice-free are characterized by low wind speeds, low SHF, and anomalous low winter temperatures. In summer, we find surface warming induced by a decrease in surface albedo in deglaciated areas and regions which experience surface melting. The Eemian temperature records derived from Greenland proxies, thus, likely include a temperature signal arising from changes in the GrIS topography. For the Eemian ice found in the NEEM core, our model suggests that up to 3.1 °C of the annual mean Eemian warming can be attributed to these topography-related processes and hence is not necessarily linked to large-scale climate variations.