6 resultados para Coats.
em BORIS: Bern Open Repository and Information System - Berna - Suiça
Resumo:
Coats plus is a highly pleiotropic disorder particularly affecting the eye, brain, bone and gastrointestinal tract. Here, we show that Coats plus results from mutations in CTC1, encoding conserved telomere maintenance component 1, a member of the mammalian homolog of the yeast heterotrimeric CST telomeric capping complex. Consistent with the observation of shortened telomeres in an Arabidopsis CTC1 mutant and the phenotypic overlap of Coats plus with the telomeric maintenance disorders comprising dyskeratosis congenita, we observed shortened telomeres in three individuals with Coats plus and an increase in spontaneous γH2AX-positive cells in cell lines derived from two affected individuals. CTC1 is also a subunit of the α-accessory factor (AAF) complex, stimulating the activity of DNA polymerase-α primase, the only enzyme known to initiate DNA replication in eukaryotic cells. Thus, CTC1 may have a function in DNA metabolism that is necessary for but not specific to telomeric integrity.
Resumo:
BACKGROUND: The beneficial effects of beta-blockers and aldosterone receptor antagonists are now well established in patients with severe systolic chronic heart failure (CHF). However, it is unclear whether beta-blockers are able to provide additional benefit in patients already receiving aldosterone antagonists. We therefore examined this question in the COPERNICUS study of 2289 patients with severe CHF receiving the beta1-beta2/alpha1 blocker carvedilol compared with placebo. METHODS: Patients were divided post hoc into subgroups according to whether they were receiving spironolactone (n = 445) or not (n = 1844) at baseline. Consistency of the effect of carvedilol versus placebo was examined for these subgroups with respect to the predefined end points of all-cause mortality, death or CHF-related hospitalizations, death or cardiovascular hospitalizations, and death or all-cause hospitalizations. RESULTS: The beneficial effect of carvedilol was similar among patients who were or were not receiving spironolactone for each of the 4 efficacy measures. For all-cause mortality, the Cox model hazard ratio for carvedilol compared with placebo was 0.65 (95% CI 0.36-1.15) in patients receiving spironolactone and 0.65 (0.51-0.83) in patients not receiving spironolactone. Hazard ratios for death or all-cause hospitalization were 0.76 (0.55-1.05) versus 0.76 (0.66-0.88); for death or cardiovascular hospitalization, 0.61 (0.42-0.89) versus 0.75 (0.64-0.88); and for death or CHF hospitalization, 0.63 (0.43-0.94) versus 0.70 (0.59-0.84), in patients receiving and not receiving spironolactone, respectively. The safety and tolerability of treatment with carvedilol were also similar, regardless of background spironolactone. CONCLUSION: Carvedilol remained clinically efficacious in the COPERNICUS study of patients with severe CHF when added to background spironolactone in patients who were practically all receiving angiotensin-converting enzyme inhibitor (or angiotensin II antagonist) therapy. Therefore, the use of spironolactone in patients with severe CHF does not obviate the necessity of additional treatment that interferes with the adverse effects of sympathetic activation, specifically beta-blockade.
Resumo:
Tonoplast, the membrane delimiting plant vacuoles, regulates ion, water and nutrient movement between the cytosol and the vacuolar lumen through the activity of its membrane proteins. Correct traffic of proteins from the endoplasmic reticulum (ER) to the tonoplast requires (i) approval by the ER quality control, (ii) motifs for exit from the ER and (iii) motifs that promote sorting to the tonoplast. Recent evidence suggests that this traffic follows different pathways that are protein-specific and could also reflect vacuole specialization for lytic or storage function. The routes can be distinguished based on their sensitivity to drugs such as brefeldin A and C834 as well as using mutant plants that are defective in adaptor proteins of vesicle coats, or dominant-negative mutants of Rab GTPases.
Resumo:
Different life-cycle stages of Trypanosoma brucei are characterized by stage-specific glycoprotein coats. GPEET procyclin, the major surface protein of early procyclic (insect midgut) forms, is transcribed in the nucleolus by RNA polymerase I as part of a polycistronic precursor that is processed to monocistronic mRNAs. In culture, when differentiation to late procyclic forms is triggered by removal of glycerol, the precursor is still transcribed, but accumulation of GPEET mRNA is prevented by a glycerol-responsive element in the 3' UTR. A genome-wide RNAi screen for persistent expression of GPEET in glycerol-free medium identified a novel protein, NRG1 (Nucleolar Regulator of GPEET 1), as a negative regulator. NRG1 associates with GPEET mRNA and with several nucleolar proteins. These include two PUF proteins, TbPUF7 and TbPUF10, and BOP1, a protein required for rRNA processing in other organisms. RNAi against each of these components prolonged or even increased GPEET expression in the absence of glycerol as well as causing a significant reduction in 5.8S rRNA and its immediate precursor. These results indicate that components of a complex used for rRNA maturation can have an additional role in regulating mRNAs that originate in the nucleolus.
Resumo:
Yakutia, Sakha Republic, in the Siberian Far East, represents one of the coldest places on Earth, with winter record temperatures dropping below -70 °C. Nevertheless, Yakutian horses survive all year round in the open air due to striking phenotypic adaptations, including compact body conformations, extremely hairy winter coats, and acute seasonal differences in metabolic activities. The evolutionary origins of Yakutian horses and the genetic basis of their adaptations remain, however, contentious. Here, we present the complete genomes of nine present-day Yakutian horses and two ancient specimens dating from the early 19th century and ∼5,200 y ago. By comparing these genomes with the genomes of two Late Pleistocene, 27 domesticated, and three wild Przewalski's horses, we find that contemporary Yakutian horses do not descend from the native horses that populated the region until the mid-Holocene, but were most likely introduced following the migration of the Yakut people a few centuries ago. Thus, they represent one of the fastest cases of adaptation to the extreme temperatures of the Arctic. We find cis-regulatory mutations to have contributed more than nonsynonymous changes to their adaptation, likely due to the comparatively limited standing variation within gene bodies at the time the population was founded. Genes involved in hair development, body size, and metabolic and hormone signaling pathways represent an essential part of the Yakutian horse adaptive genetic toolkit. Finally, we find evidence for convergent evolution with native human populations and woolly mammoths, suggesting that only a few evolutionary strategies are compatible with survival in extremely cold environments.