4 resultados para Coat proteins
em BORIS: Bern Open Repository and Information System - Berna - Suiça
Resumo:
Activated platelets bind numerous adhesive and procoagulant proteins by receptor-mediated processes. Although there is little evidence to suggest that these processes are heterogeneous in platelets, we previously found that platelets co-stimulated with collagen and thrombin express functional alpha-granule factor V only on a subpopulation of cells. Here we show that these cells, referred to as 'COAT-platelets', bind additional alpha-granule proteins, including fibrinogen, von Willebrand factor, thrombospondin, fibronectin and alpha2-antiplasmin. These proteins are all transglutaminase substrates, and inhibitors of transglutaminase prevent the production of COAT-platelets. A synthetic transglutaminase substrate (CP15) also binds to COAT-platelets, and analysis by high performance liquid chromatography/mass spectrometry shows that a product is formed with a relative molecular mass (Mr) equal to CP15 plus 176. Serotonin, an abundant component of platelet-dense granules, has an Mr of 176, and fibrinogen isolated from COAT-platelets contains covalently linked serotonin. Synthetic bovine serum albumin-(serotonin)6 binds selectively to COAT-platelets and also inhibits the retention of procoagulant proteins on COAT-platelets. These data indicate that COAT-platelets use serotonin conjugation to augment the retention of procoagulant proteins on their cell surface through an as yet unidentified serotonin receptor.
Resumo:
Collagen- and thrombin-activated (COAT) platelets were first described in 2000 and have attracted considerable interest, changing the interpretation of the way in which platelets contribute to thrombin generation and how their procoagulant activity is organized. Platelets activated by two agonists coming from glycoprotein VI or Fc gamma-receptor IIA agonists on the one hand and thrombin on the other produce a population of approximately 50% highly procoagulant active platelets. This subgroup is formed by tissue transglutaminase and factor XIIIa linking of serotonin to the procoagulant proteins from granules or plasma, and these serotonylated proteins bind to fibrinogen or thrombospondin on the platelet surface. Serotonylation in the platelet cytoplasm has recently been shown to be an important regulating mechanism governing the activation of small GTPases and their function in granule release. Recent studies with Tph-/- mice in which the peripheral serotonin, including that in platelets, is very strongly reduced, have shown a prolonged bleeding time, suggesting it has an important hemostatic role in the release of platelet von Willebrand factor. More knowledge about how COAT platelets are formed will be important for a better understanding of the physiology and pathology of hemostasis.
Resumo:
A 'two coat' model of the life cycle of Trypanosoma brucei has prevailed for more than 15 years. Metacyclic forms transmitted by infected tsetse flies and mammalian bloodstream forms are covered by variant surface glycoproteins. All other life cycle stages were believed to have a procyclin coat, until it was shown recently that epimastigote forms in tsetse salivary glands express procyclin mRNAs without translating them. As epimastigote forms cannot be cultured, a procedure was devised to compare the transcriptomes of parasites in different fly tissues. Transcripts encoding a family of glycosylphosphatidyl inositol-anchored proteins, BARPs (previously called bloodstream alanine-rich proteins), were 20-fold more abundant in salivary gland than midgut (procyclic) trypanosomes. Anti-BARP antisera reacted strongly and exclusively with salivary gland parasites and a BARP 3' flanking region directed epimastigote-specific expression of reporter genes in the fly, but inhibited expression in bloodstream and procyclic forms. In contrast to an earlier report, we could not detect BARPs in bloodstream forms. We propose that BARPs form a stage-specific coat for epimastigote forms and suggest renaming them brucei alanine-rich proteins.
Resumo:
The mycobacterial cell envelope is fascinating in several ways. First, its composition is unique by the exceptional lipid content, which consists of very long-chain (up to C90) fatty acids, the so-called mycolic acids, and a variety of exotic compounds. Second, these lipids are atypically organized into a Gram-negative-like outer membrane (mycomembrane) in these Gram-positive bacteria, as recently revealed by CEMOVIS, and this mycomembrane also contains pore-forming proteins. Third, the mycolic acids esterified a holistic heteropolysaccharide (arabinogalacan), which in turn is linked to the peptidoglycan to form the cell wall skeleton (CWS). In slow-growing pathogenic mycobacterial species, this giant structure is surrounded by a capsular layer composed mainly of polysaccharides, primarily a glycogen-like glucan. The CWS is separated from the plasma membrane by a periplasmic space. A challenging research avenue for the next decade comprises the identification of the components of the uptake and secretion machineries and the isolation and biochemical characterization of the mycomembrane.