7 resultados para Clinical Malaria
em BORIS: Bern Open Repository and Information System - Berna - Suiça
Resumo:
Rapid diagnostic tests (RDT) are sometimes recommended to improve the home-based management of malaria. The accuracy of an RDT for the detection of clinical malaria and the presence of malarial parasites has recently been evaluated in a high-transmission area of southern Mali. During the same study, the cost-effectiveness of a 'test-and-treat' strategy for the home-based management of malaria (based on an artemisinin-combination therapy) was compared with that of a 'treat-all' strategy. Overall, 301 patients, of all ages, each of whom had been considered a presumptive case of uncomplicated malaria by a village healthworker, were checked with a commercial RDT (Paracheck-Pf). The sensitivity, specificity, and positive and negative predictive values of this test, compared with the results of microscopy and two different definitions of clinical malaria, were then determined. The RDT was found to be 82.9% sensitive (with a 95% confidence interval of 78.0%-87.1%) and 78.9% (63.9%-89.7%) specific compared with the detection of parasites by microscopy. In the detection of clinical malaria, it was 95.2% (91.3%-97.6%) sensitive and 57.4% (48.2%-66.2%) specific compared with a general practitioner's diagnosis of the disease, and 100.0% (94.5%-100.0%) sensitive but only 30.2% (24.8%-36.2%) specific when compared against the fulfillment of the World Health Organization's (2003) research criteria for uncomplicated malaria. Among children aged 0-5 years, the cost of the 'test-and-treat' strategy, per episode, was about twice that of the 'treat-all' (U.S.$1.0. v. U.S.$0.5). In older subjects, however, the two strategies were equally costly (approximately U.S.$2/episode). In conclusion, for children aged 0-5 years in a high-transmission area of sub-Saharan Africa, use of the RDT was not cost-effective compared with the presumptive treatment of malaria with an ACT. In older patients, use of the RDT did not reduce costs. The question remains whether either of the strategies investigated can be made affordable for the affected population.
Resumo:
OBJECTIVES Cotrimoxazole prophylactic treatment (CPT) prevents opportunistic infections in HIV-infected or HIV-exposed children, but estimates of the effectiveness in preventing malaria vary. We reviewed studies that examined the effect of CPT on incidence of malaria in children in sub-Saharan Africa. METHODS We searched PubMed and EMBASE for randomised controlled trials (RCTs) and cohort studies on the effect of CPT on incidence of malaria and mortality in children and extracted data on the prevalence of sulphadoxine-pyrimethamine resistance-conferring point mutations. Incidence rate ratios (IRR) from individual studies were combined using random effects meta-analysis; confounder-adjusted estimates were used for cohort studies. The importance of resistance was examined in meta-regression analyses. RESULTS Three RCTs and four cohort studies with 5039 children (1692 HIV-exposed; 2800 HIV-uninfected; 1486 HIV-infected) were included. Children on CPT were less likely to develop clinical malaria episodes than those without prophylaxis (combined IRR 0.37, 95% confidence interval: 0.21-0.66), but there was substantial between-study heterogeneity (I-squared = 94%, P < 0.001). The protective efficacy of CPT was highest in an RCT from Mali, where the prevalence of antifolate resistant plasmodia was low. In meta-regression analyses, there was some evidence that the efficacy of CPT declined with increasing levels of resistance. Mortality was reduced with CPT in an RCT from Zambia, but not in a cohort study from Côte d'Ivoire. CONCLUSIONS Cotrimoxazole prophylactic treatment reduces incidence of malaria and mortality in children in sub-Saharan Africa, but study designs, settings and results were heterogeneous. CPT appears to be beneficial for HIV-infected and HIV-exposed as well as HIV-uninfected children.
Resumo:
Today's malaria control efforts are limited by our incomplete understanding of the biology of Plasmodium and of the complex relationships between human populations and the multiple species of mosquito and parasite. Research priorities include the development of in vitro culture systems for the complete life cycle of P. falciparum and P. vivax and the development of an appropriate liver culture system to study hepatic stages. In addition, genetic technologies for the manipulation of Plasmodium need to be improved, the entire parasite metabolome needs to be characterized to identify new druggable targets, and improved information systems for monitoring the changes in epidemiology, pathology, and host-parasite-vector interactions as a result of intensified control need to be established to bridge the gap between bench, preclinical, clinical, and population-based sciences.
Resumo:
A prospective, dose-escalating, quasi-experimental clinical trial was conducted with a traditional healer using a decoction of Argemone mexicana for the treatment of malaria in Mali. The remedy was prescribed in three regimens: once daily for 3 days (Group A; n=23); twice daily for 7 days (Group B; n=40); and four times daily for the first 4 days followed by twice daily for 3 days (Group C; n=17). Thus, 80 patients were included, of whom 80% were aged<5 years and 25% were aged<1 year. All presented to the traditional healer with symptoms of malaria and had a Plasmodium falciparum parasitaemia>2000/microl but no signs of severe malaria. The proportions of adequate clinical response (ACR) at Day 14 were 35%, 73% and 65% in Groups A, B and C, respectively (P=0.011). At Day 14, overall proportions of ACR were lower in children aged<1 year (45%) and higher in patients aged>5 years (81%) (P=0.027). Very few patients had complete parasite clearance, but at Day 14, 67% of patients with ACR had a parasitaemia<2000/microl. No patient needed referral for severe disease. Only minor side effects were observed. Further research should determine whether this local resource could represent a first-aid home treatment in remote areas.
Resumo:
Clinical immunity to Plasmodium falciparum malaria develops after repeated exposure to the parasite. At least 2 P. falciparum variant antigens encoded by multicopy gene families (var and rif) are targets of this adaptive antibody-mediated immunity. A third multigene family of variant antigens comprises the stevor genes. Here, 4 different stevor sequences were selected for cloning and expression in Escherichia coli and His6-tagged fusion proteins were used for assessing the development of immunity. In a cross-sectional analysis of clinically immune adults living in a malaria endemic area in Ghana, high levels of anti-STEVOR IgG antibody titres were determined in ELISA. A cross-sectional study of 90 nine-month-old Ghanaian infants using 1 recombinant STEVOR showed that the antibody responses correlated positively with the number of parasitaemia episodes. In a longitudinal investigation of 17 immunologically naïve 9-month-old infants, 3 different patterns of anti-STEVOR antibody responses could be distinguished (high, transient and low). Children with high anti-STEVOR-antibody levels exhibited an elevated risk for developing parasitaemia episodes. Overall, a protective effect could not be attributed to antibodies against the STEVOR proteins chosen for the study presented here.
Resumo:
Cerebral malaria (CM) is associated with high mortality and morbidity as a certain percentage of survivors suffers from persistent neurological sequelae. The mechanisms leading to death and functional impairments are yet not fully understood. This study investigated biochemical and morphological markers of apoptosis in the brains of mice infected with Plasmodium berghei ANKA. Cleaved caspase-3 was detected in the brains of animals with clinical signs of CM and immunoreactivity directly correlated with the clinical severity of the disease. Caudal parts of the brain showed more intense immunoreactivity for cleaved caspase-3. Double-labelling experiments revealed processing of caspase-3 primarily in neurons and oligodendrocytes. These cells also exhibited apoptotic-like morphological profiles in ultrastructural analysis. Further, cleavage of caspase-3 was found in endothelial cells. In contrast to neurons and oligodendrocytes, apoptosis of endothelial cells already occurred in early stages of the disease. Our results are the first to demonstrate processing of caspase-3 in different central nervous system cells of animals with CM. Apoptosis of endothelial cells may represent a critical issue for the development of the disease in the mouse model. Neurological signs and symptoms might be attributable, at least in part, to apoptotic degeneration of neurons and glia in advanced stages of murine CM.
Resumo:
During the blood meal of a Plasmodium-infected mosquito, 10 to 100 parasites are inoculated into the skin and a proportion of these migrate via the bloodstream to the liver where they infect hepatocytes. The Plasmodium liver stage, despite its clinical silence, represents a highly promising target for antimalarial drug and vaccine approaches. Successfully invaded parasites undergo a massive proliferation in hepatocytes, producing thousands of merozoites that are transported into a blood vessel to infect red blood cells. To successfully develop from the liver stage into infective merozoites, a tight regulation of gene expression is needed. Although this is a very interesting aspect in the biology of Plasmodium, little is known about gene regulation in Plasmodium parasites in general and in the liver stage in particular. We have functionally analyzed a novel promoter region of the rodent parasite Plasmodium berghei that is exclusively active during the liver stage of the parasite. To prove stage-specific activity of the promoter, GFP and luciferase reporter assays have been successfully established, allowing both qualitative and accurate quantitative analysis. To further characterize the promoter region, the transcription start site was mapped by rapid amplification of cDNA ends (5'-RACE). Using promoter truncation experiments and site-directed mutagenesis within potential transcription factor binding sites, we suggest that the minimal promoter contains more than one binding site for the recently identified parasite-specific ApiAP2 transcription factors. The identification of a liver stage-specific promoter in P. berghei confirms that the parasite is able to tightly regulate gene expression during its life cycle. The identified promoter region might now be used to study the biology of the Plasmodium liver stage, which has thus far proven problematic on a molecular level. Stage-specific expression of dominant-negative mutant proteins and overexpression of proteins normally active in other life cycle stages will help to understand the function of the proteins investigated.