12 resultados para Cleaning symbiosis

em BORIS: Bern Open Repository and Information System - Berna - Suiça


Relevância:

20.00% 20.00%

Publicador:

Resumo:

The Burgundy truffle (Tuber aestivum Vittad.), an ectomycorrhizal fungus living in association with host plants, is one of the most exclusive delicacies. The symbiosis with deciduous oak, beech, and hazel dominates our concept of truffle ecophysiology, whereas potential conifer hosts have rarely been reported. Here, we present morphological and molecular evidence of a wildlife T. aestivum symbiosis with Norway spruce (Picea abies Karst.) and an independent greenhouse inoculation experiment, to confirm our field observation in southwest Germany. A total of 27 out of 50 P. abies seedlings developed T. aestivum ectomycorrhizae with a mean mycorrhization rate of 19.6 %. These findings not only suggest P. abies to be a productive host species under suitable biogeographic conditions but also emphasize the broad ecological amplitude and great symbiotic range of T. aestivum. While challenging common knowledge, this study demonstrates a significant expansion of the species' cultivation potential to the central European regions, where P. abies forests occur on calcareous soils.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Phosphorus and nitrogen are essential nutrient elements that are needed by plants in large amounts. The arbuscular mycorrhizal symbiosis between plants and soil fungi improves phosphorus and nitrogen acquisition under limiting conditions. On the other hand, these nutrients influence root colonization by mycorrhizal fungi and symbiotic functioning. This represents a feedback mechanism that allows plants to control the fungal symbiont depending on nutrient requirements and supply. Elevated phosphorus supply has previously been shown to exert strong inhibition of arbuscular mycorrhizal development. Here, we address to what extent inhibition by phosphorus is influenced by other nutritional pathways in the interaction between Petunia hybrida and R. irregularis. We show that phosphorus and nitrogen are the major nutritional determinants of the interaction. Interestingly, the symbiosis-promoting effect of nitrogen starvation dominantly overruled the suppressive effect of high phosphorus nutrition onto arbuscular mycorrhiza, suggesting that plants promote the symbiosis as long as they are limited by one of the two major nutrients. Our results also show that in a given pair of symbiotic partners (Petunia hybrida and R. irregularis), the entire range from mutually symbiotic to parasitic can be observed depending on the nutritional conditions. Taken together, these results reveal complex nutritional feedback mechanisms in the control of root colonization by arbuscular mycorrhizal fungi.