2 resultados para Classificació AMS::00 General

em BORIS: Bern Open Repository and Information System - Berna - Suiça


Relevância:

30.00% 30.00%

Publicador:

Resumo:

In spite of the environmental relevance of 129I, there is still a scarcity of data about its presence in the different natural compartments. In this work, results are presented on the concentration of 129I in rainwater samples taken in Sevilla (southwestern Spain) and in a sediment core taken near the Ringhals coast (Sweden). Typical concentrations of 108 and 109129I at/l are found in rainwater samples, similar to other values in literature. In the case of the sediment core, our results clearly show the impact of anthropogenic sources, with concentrations in the order of 1013129I at./kg and isotopic ratios 129I/127I in the order of 10−8 in the higher layers.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Peat deposits in Greenland and Denmark were investigated to show that high-resolution dating of these archives of atmospheric deposition can be provided for the last 50 years by radiocarbon dating using the atmospheric bomb pulse. (super 14) C was determined in macrofossils from sequential one cm slices using accelerator mass spectrometry (AMS). Values were calibrated with a general-purpose curve derived from annually averaged atmospheric (super 14) CO (sub 2) values in the northernmost northern hemisphere (NNH, 30 degrees -90 degrees N). We present a through review of (super 14) C bomb-pulse data from the NNH including our own measurements made in tree rings and seeds from Arizona as well as other previously published data. We show that our general-purpose calibration curve is valid for the whole NNH producing accurate dates within 1-2 years. In consequence, (super 14) C AMS can precisely date individual points in recent peat deposits within the range of the bomb-pulse (from the mid-1950s on). Comparing the (super 14) C AMS results with the customary dating method for recent peat profiles by (super 210) Pb, we show that the use of (super 137) Cs to validate and correct (super 210) Pb dates proves to be more problematic than previously supposed. As a unique example of our technique, we show how this chronometer can be applied to identify temporal changes in Hg concentrations from Danish and Greenland peat cores.