15 resultados para Classical Greek society
em BORIS: Bern Open Repository and Information System - Berna - Suiça
Resumo:
The association between PRNP variation and scrapie incidence was investigated in a highly affected Greek goat herd. Four mutations were identified at codons 171Q/R, 211R/Q, 222Q/K and 240P/S. Lysine at codon 222 was found to be associated with the protection from natural scrapie (P=0.0111). Glutamine at codon 211 was observed in eight animals, all of them being scrapie-negative, indicating a possible protective role of this polymorphism although statistical analysis failed to support it (P=0.1074). A positive association (P=0.0457) between scrapie-affected goats and the wild-type Q(171)R(211)Q(222)S(240) allele is presented for the first time. In addition, a novel R(171)RQS allele, which is identical to the A(136)R(154)R(171) allele that has been associated with resistance to classical scrapie in sheep, was observed in low frequency. Resistant alleles that include K(222) and Q(211) are absent or rare in sheep and can provide the basis for the development of a feasible breeding programme for scrapie eradication in goats.
Resumo:
Considerable efforts have been directed toward the identification of small-ruminant prion diseases, i.e., classical and atypical scrapie as well as bovine spongiform encephalopathy (BSE). Here we report the in-depth molecular analysis of the proteinase K-resistant prion protein core fragment (PrP(res)) in a highly scrapie-affected goat flock in Greece. The PrP(res) profile by Western immunoblotting in most animals was that of classical scrapie in sheep. However, in a series of clinically healthy goats we identified a unique C- and N-terminally truncated PrP(res) fragment, which is akin but not identical to that observed for atypical scrapie. These findings reveal novel aspects of the nature and diversity of the molecular PrP(res) phenotypes in goats and suggest that these animals display a previously unrecognized prion protein disorder.
Resumo:
The paper focuses on the imagery of early Christian rituals (esp. of the eucharist and baptism) as they are found in allegorical interpretations of beasts in the Greek Physiologus and trace the way of selected motifs from the New Testament to this first Christian interpretation of nature in context of early Christian literature and theology. A special attention is given to the pelican, which is one of the most famous symbols of the eucharist, and to impressive baptismal imageries in the chapter on the eagle, on the snake and in some other chapters. The aim of the analysis is to explore the theological roots of the ritual imagery of Physiologus and to show that this work of early Egyptian Christianity is anything but 'unsakramental' as argued by E. Peterson (1959).
Resumo:
BACKGROUND The treatment and outcomes of patients with human immunodeficiency virus (HIV)-associated Hodgkin lymphoma (HL) continue to evolve. The International Prognostic Score (IPS) is used to predict the survival of patients with advanced-stage HL, but it has not been validated in patients with HIV infection. METHODS This was a multi-institutional, retrospective study of 229 patients with HIV-associated, advanced-stage, classical HL who received doxorubicin, bleomycin, vinblastine, and dacarbazine (ABVD) plus combination antiretroviral therapy. Their clinical characteristics were presented descriptively, and multivariate analyses were performed to identify the factors that were predictive of response and prognostic of progression-free survival (PFS) and overall survival (OS). RESULTS The overall and complete response rates to ABVD in patients with HIV-associated HL were 91% and 83%, respectively. After a median follow-up of 5 years, the 5-year PFS and OS rates were 69% and 78%, respectively. In multivariate analyses, there was a trend toward an IPS score >3 as an adverse factor for PFS (hazard ratio [HR], 1.49; P=.15) and OS (HR, 1.84; P=.06). A cluster of differentiation 4 (CD4)-positive (T-helper) cell count <200 cells/μL was associated independently with both PFS (HR, 2.60; P=.002) and OS (HR, 2.04; P=.04). The CD4-positive cell count was associated with an increased incidence of death from other causes (HR, 2.64; P=.04) but not with death from HL-related causes (HR, 1.55; P=.32). CONCLUSIONS The current results indicate excellent response and survival rates in patients with HIV-associated, advanced-stage, classical HL who receive ABVD and combination antiretroviral therapy as well as the prognostic value of the CD4-positive cell count at the time of lymphoma diagnosis for PFS and OS. Cancer 2014. © 2014 American Cancer Society.
Resumo:
GABAA receptors are the major inhibitory neurotransmitter receptors in the brain. Benzodiazepine exert their action via a high affinity-binding site at the α/γ subunit interface on some of these receptors. Diazepam has sedative, hypnotic, anxiolytic, muscle relaxant, and anticonvulsant effects. It acts by potentiating the current evoked by the agonist GABA. Understanding specific interaction of benzodiazepines in the binding pocket of different GABAA receptor isoforms might help to separate these divergent effects. As a first step, we characterized the interaction between diazepam and the major GABAA receptor isoform α1β2γ2. We mutated several amino acid residues on the γ2-subunit assumed to be located near or in the benzodiazepine binding pocket individually to cysteine and studied the interaction with three ligands that are modified with a cysteine-reactive isothiocyanate group (-NCS). When the reactive NCS group is in apposition to the cysteine residue this leads to a covalent reaction. In this way, three amino acid residues, γ2Tyr58, γ2Asn60, and γ2Val190 were located relative to classical benzodiazepines in their binding pocket on GABAA receptors.
Resumo:
The numerical simulations of the magnetic properties of extended three-dimensional networks containing M(II) ions with an S = 5/2 ground-state spin have been carried out within the framework of the isotropic Heisenberg model. Analytical expressions fitting the numerical simulations for the primitive cubic, diamond, together with (10−3) cubic networks have all been derived. With these empirical formulas in hands, we can now extract the interaction between the magnetic ions from the experimental data for these networks. In the case of the primitive cubic network, these expressions are directly compared with those from the high-temperature expansions of the partition function. A fit of the experimental data for three complexes, namely [(N(CH3)4][Mn(N3)] 1, [Mn(CN4)]n 2, and [FeII(bipy)3][MnII2(ox)3] 3, has been carried out. The best fits were those obtained using the following parameters, J = −3.5 cm-1, g = 2.01 (1); J = −8.3 cm-1, g = 1.95 (2); and J = −2.0 cm-1, g = 1.95 (3).
Resumo:
We investigate the transition from unitary to dissipative dynamics in the relativistic O(N) vector model with the λ(φ2)2 interaction using the nonperturbative functional renormalization group in the real-time formalism. In thermal equilibrium, the theory is characterized by two scales, the interaction range for coherent scattering of particles and the mean free path determined by the rate of incoherent collisions with excitations in the thermal medium. Their competition determines the renormalization group flow and the effective dynamics of the model. Here we quantify the dynamic properties of the model in terms of the scale-dependent dynamic critical exponent z in the limit of large temperatures and in 2≤d≤4 spatial dimensions. We contrast our results to the behavior expected at vanishing temperature and address the question of the appropriate dynamic universality class for the given microscopic theory.
Resumo:
The viral protein Npro is unique to the genus Pestivirus within the family Flaviviridae. After autocatalytic cleavage from the nascent polyprotein, Npro suppresses type I IFN (IFN-α/β) induction by mediating proteasomal degradation of IFN regulatory factor 3 (IRF-3). Previous studies found that the Npro-mediated IRF-3 degradation was dependent of a TRASH domain in the C-terminal half of Npro coordinating zinc by means of the amino acid residues C112, C134, D136 and C138. Interestingly, four classical swine fever virus (CSFV) isolates obtained from diseased pigs in Thailand in 1993 and 1998 did not suppress IFN-α/β induction despite the presence of an intact TRASH domain. Through systematic analyses, it was found that an amino acid mutation at position 40 or mutations at positions 17 and 61 in the N-terminal half of Npro of these four isolates were related to the lack of IRF-3-degrading activity. Restoring a histidine at position 40 or both a proline at position 17 and a lysine at position 61 based on the sequence of a functional Npro contributed to higher stability of the reconstructed Npro compared with the Npro from the Thai isolate. This led to enhanced interaction of Npro with IRF-3 along with its degradation by the proteasome. The results of the present study revealed that amino acid residues in the N-terminal domain of Npro are involved in the stability of Npro, in interaction of Npro with IRF-3 and subsequent degradation of IRF-3, leading to downregulation of IFN-α/β production.
Resumo:
Classical swine fever virus (CSFV) causes a highly contagious disease in pigs that can range from a severe haemorrhagic fever to a nearly unapparent disease, depending on the virulence of the virus strain. Little is known about the viral molecular determinants of CSFV virulence. The nonstructural protein NS4B is essential for viral replication. However, the roles of CSFV NS4B in viral genome replication and pathogenesis have not yet been elucidated. NS4B of the GPE- vaccine strain and of the highly virulent Eystrup strain differ by a total of seven amino acid residues, two of which are located in the predicted trans-membrane domains of NS4B and were described previously to relate to virulence, and five residues clustering in the N-terminal part. In the present study, we examined the potential role of these five amino acids in modulating genome replication and determining pathogenicity in pigs. A chimeric low virulent GPE- -derived virus carrying the complete Eystrup NS4B showed enhanced pathogenicity in pigs. The in vitro replication efficiency of the NS4B chimeric GPE- replicon was significantly higher than that of the replicon carrying only the two Eystrup-specific amino acids in NS4B. In silico and in vitro data suggest that the N-terminal part of NS4B forms an amphipathic α-helix structure. The N-terminal NS4B with these five amino acid residues is associated with the intracellular membranes. Taken together, this is the first gain-of-function study showing that the N-terminal domain of NS4B can determine CSFV genome replication in cell culture and viral pathogenicity in pigs.