29 resultados para Circadian rythm
em BORIS: Bern Open Repository and Information System - Berna - Suiça
Resumo:
OBJECTIVE: To compare the effect of bimatoprost and the fixed combination of latanoprost and timolol (LTFC) on 24-hour mean intraocular pressure (IOP) after patients are switched from a nonfixed combination of latanoprost and timolol. DESIGN: Randomized, double-masked, multicenter clinical trial. PARTICIPANTS: Two hundred patients with glaucoma or ocular hypertension. METHODS: Included were patients who were controlled (IOP < 21 mmHg) on the nonfixed combination of latanoprost and timolol for at least 3 months before the baseline visit or patients on monotherapy with either latanoprost or timolol who were eligible for dual therapy not being fully controlled on monotherapy. The latter group of patients underwent a 6-week wash-in phase with the nonfixed combination of latanoprost and timolol before baseline IOP determination and study inclusion. Supine and sitting position IOPs were recorded at 8 pm, midnight, 5 am, 8 am, noon, and 4 pm at baseline, week 6, and week 12 visits. MAIN OUTCOME MEASURE: An analysis of covariance model was used for a noninferiority test of the primary efficacy variable, with mean area under the 24-hour IOP curve after 12 weeks of treatment as response variable and treatment, center, and baseline IOP as factors. A secondary analysis was performed on the within-treatment change from baseline. RESULTS: Mean baseline IOPs were 16.3+/-3.3 mmHg and 15.5+/-2.9.mmHg in the bimatoprost and LTFC groups, respectively. At week 12, mean IOPs were 16.1+/-2.5 mmHg for the bimatoprost group and 16.3+/-3.7 mmHg for the LTFC group, and no significant difference between the 2 treatment groups could be found. As compared with baseline, mean IOP increased by 0.3+/-3.6 mmHg during the day and decreased by 0.8+/-3.8 mmHg during the night in the bimatoprost group, whereas there were increases of 1.43+/-2.6 mmHg and 0.14+/-3.2 mmHg in the LTFC group, respectively. CONCLUSIONS: Bimatoprost is not inferior to the LTFC in maintaining IOP at a controlled level during a 24-hour period in patients switched from the nonfixed combination of latanoprost and timolol.
Resumo:
OBJECTIVE Little information is available on the early course of hypertension in type 1 diabetes. The aim of our study, therefore, was to document circadian blood pressure profiles in patients with a diabetes duration of up to 20 years and relate daytime and nighttime blood pressure to duration of diabetes, BMI, insulin therapy, and HbA1c. RESEARCH DESIGN AND METHODS Ambulatory profiles of 24-h blood pressure were recorded in 354 pediatric patients with type 1 diabetes (age 14.6 +/- 4.2 years, duration of diabetes 5.6 +/- 5.0 years, follow-up for up to 9 years). A total of 1,011 profiles were available for analysis from patients not receiving antihypertensive medication. RESULTS Although daytime mean systolic pressure was significantly elevated in diabetic subjects (+3.1 mmHg; P < 0.0001), daytime diastolic pressure was not different from from the height- and sex-adjusted normal range (+0.1 mmHg, NS). In contrast, both systolic and diastolic nighttime values were clearly elevated (+7.2 and +4.2 mmHg; P < 0.0001), and nocturnal dipping was reduced (P < 0.0001). Systolic blood pressure was related to overweight in all patients, while diastolic blood pressure was related to metabolic control in young adults. Blood pressure variability was significantly lower in girls compared with boys (P < 0.01). During follow-up, no increase of blood pressure was noted; however, diastolic nocturnal dipping decreased significantly (P < 0.03). Mean daytime blood pressure was significantly related to office blood pressure (r = +0.54 for systolic and r = +0.40 for diastolic pressure); however, hypertension was confirmed by ambulatory blood pressure measurement in only 32% of patients with elevated office blood pressure. CONCLUSIONS During the early course of type 1 diabetes, daytime blood pressure is higher compared with that of healthy control subjects. The elevation of nocturnal values is even more pronounced and nocturnal dipping is reduced. The frequency of white-coat hypertension is high among adolescents with diabetes, and ambulatory blood pressure monitoring avoids unnecessary antihypertensive treatment.
Resumo:
The circadian clock orchestrates many aspects of human physiology, and disruption of this clock has been implicated in various pathologies, ranging from cancer to metabolic syndrome and diabetes. Although there is evidence that metabolism and the circadian clockwork are intimately linked on a transcriptional level, whether these effects are directly under clock control or are mediated by the rest-activity cycle and the timing of food intake is unclear. To answer this question, we conducted an unbiased screen in human subjects of the metabolome of blood plasma and saliva at different times of day. To minimize indirect effects, subjects were kept in a 40-h constant routine of enforced posture, constant dim light, hourly isocaloric meals, and sleep deprivation. Under these conditions, we found that ~15% of all identified metabolites in plasma and saliva were under circadian control, most notably fatty acids in plasma and amino acids in saliva. Our data suggest that there is a strong direct effect of the endogenous circadian clock on multiple human metabolic pathways that is independent of sleep or feeding. In addition, they identify multiple potential small-molecule biomarkers of human circadian phase and sleep pressure.
Resumo:
The aim of this descriptive analysis was to examine sleep timing, circadian phase, and phase angle of entrainment across adolescence in a longitudinal study design. Ninety-four adolescents participated; 38 (21 boys) were 9-10 years ("younger cohort") and 56 (30 boys) were 15-16 years ("older cohort") at the baseline assessment. Participants completed a baseline and then follow-up assessments approximately every six months for 2.5 years. At each assessment, participants wore a wrist actigraph for at least one week at home to measure self-selected sleep timing before salivary dim light melatonin onset (DLMO) phase - a marker of the circadian timing system - was measured in the laboratory. Weekday and weekend sleep onset and offset and weekend-weekday differences were derived from actigraphy. Phase angles were the time durations from DLMO to weekday sleep onset and offset times. Each cohort showed later sleep onset (weekend and weekday), later weekend sleep offset, and later DLMO with age. Weekday sleep offset shifted earlier with age in the younger cohort and later in the older cohort after age 17. Weekend-weekday sleep offset differences increased with age in the younger cohort and decreased in the older cohort after age 17. DLMO to sleep offset phase angle narrowed with age in the younger cohort and became broader in the older cohort. The older cohort had a wider sleep onset phase angle compared to the younger cohort; however, an age-related phase angle increase was seen in the younger cohort only. Individual differences were seen in these developmental trajectories. This descriptive study indicated that circadian phase and self-selected sleep delayed across adolescence, though school-day sleep offset advanced until no longer in high school, whereupon offset was later. Phase angle changes are described as an interaction of developmental changes in sleep regulation interacting with psychosocial factors (e.g., bedtime autonomy)
Resumo:
Nocturnal nondipping is a feature of salt-sensitive, hypertensive individuals. In normotensive children and adults, the impact of salt intake on circadian blood pressure (BP) rhythm is not well defined.
Resumo:
Melatonin is an important endocrine signal for darkness in mammals. Transcriptional activation of the arylalkylamine-N-acetyltransferase gene encoding for the penultimate enzyme in melatonin synthesis drives the daily rhythm of the hormone in the pineal gland of rodents. Rhythmic arylalkylamine-N-acetyltransferase expression is controlled by the cAMP-signal transduction pathway and involves the activation of ?-adrenergic receptors and the inducible cAMP early repressor. In addition, the rat arylalkylamine-N-acetyltransferase promoter contains an E-box element which can interact with clock proteins. Moreover, the pineal gland of mice shows a circadian rhythm in clock proteins such as the transcriptional repressor Period1, which has been shown to control rhythmic gene expression in a variety of tissues. However, the role of Period1 in the regulation of pineal melatonin synthesis is still unknown. Therefore, circadian rhythms in arylalkylamine-N-acetyltransferase, ?-adrenergic receptor, and inducible cAMP early repressor mRNA levels (real time PCR), arylalkylamine-N-acetyltransferase enzyme activity (radiometric assay) and melatonin concentration radio immuno assay (RIA) were analyzed in the pineal gland of mice with a targeted deletion of the Period1 gene (Per1-/-) and the corresponding wildtype. In Per1-/- the amplitude in arylalkylamine-N-acetyltransferase expression was significantly elevated as compared to wildtype. In contrast, ?-adrenergic receptor and inducible cAMP early repressor mRNA levels were not affected by the Period1-deficiency. This indicates that the molecular clockwork alters the amplitude of arylalkylamine-N-acetyltransferase expression. In vitro, pineal glands of Per1-/- mice showed a day night difference in arylalkylamine-N-acetyltransferase expression with high levels at night. This suggests that a deficient in Period1 elicits similar effects as the activation of the cAMP-signal transduction pathway in wildtype mice.
Resumo:
Adrenocortical tumors are rare in children and present with variable signs depending on the type of hormone excess. We herein describe the unusual presentation of a child with adrenocortical tumor and introduce the concept of in vitro chemosensitivity testing. CASE REPORT: A 10.5-year-old girl presented with hypertrichosis/hirsutism and weight loss. The weight loss and behavioral problems, associated with halted puberty and growth, led to the initial diagnosis of anorexia nervosa. However, subsequent weight gain but persisting arrest in growth and puberty and the appearance of central fat distribution prompted further evaluation. RESULTS AND FOLLOW-UP: 24h-urine free cortisol was elevated. Morning plasma ACTH was undetectable, while cortisol was elevated and circadian rhythmicity was absent. Thus a hormonally active adrenal cortical tumor (ACT) was suspected. On magnetic resonance imaging (MRI) a unilateral, encapsulated tumor was found which was subsequently removed surgically. Tissue was investigated histologically and for chemosensitivity in primary cell cultures. Although there were some risk factors for malignancy, the tumor was found to be a typical adenoma. Despite this histology, tumor cells survived in culture and were sensitive to cisplatin in combination with gemcitabine or paclitaxel. At surgery, the patient was started on hydrocortisone replacement which was unsuccessfully tapered over 3 months. Full recovery of the hypothalamus-pituitary-adrenal axis occurred only after 3 years. CONCLUSIONS: The diagnosis of a hormonally active adrenocortical tumor is often delayed because of atypical presentation. Cortisol replacement following unilateral tumor excision is mandatory and may be required for months or years. Individualized chemosensitivity studies carried out on primary cultures established from the tumor tissue itself may provide a tool in evaluating the effectiveness of chemotherapeutic drugs in the event that the adrenocortical tumor may prove to be carcinoma.
Resumo:
Disturbances of sleep-wake rhythms are an important problem in Alzheimer's disease (AD). Circadian rhythms are regulated by clock genes. Transforming growth factor-beta (TGF-β) is overexpressed in neurons in AD and is the only cytokine that is increased in cerebrospinal fluid (CSF). Our data show that TGF-β2 inhibits the expression of the clock genes Period (Per)1, Per2, and Rev-erbα, and of the clock-controlled genes D-site albumin promoter binding protein (Dbp) and thyrotroph embryonic factor (Tef). However, our results showed that TGF-β2 did not alter the expression of brain and muscle Arnt-like protein-1 (Bmal1). The concentrations of TGF-β2 in the CSF of 2 of 16 AD patients and of 1 of 7 patients with mild cognitive impairment were in the dose range required to suppress the expression of clock genes. TGF-β2-induced dysregulation of clock genes may alter neuronal pathways, which may be causally related to abnormal sleep-wake rhythms in AD patients.
Resumo:
The risk of sudden death is increased in athletes with a male predominance. Regular physical activity increases vagal tone, and may protect against exercise-induced ventricular arrhythmias. We investigated training-related modulations of the autonomic nervous system in female and male endurance athletes. Runners of a 10-mile race were invited. Of 873 applicants, 68 female and 70 male athletes were randomly selected and stratified according to their average weekly training hours in a low (≤4 h) and high (>4 h) volume training group. Analysis of heart rate variability was performed over 24 h. Spectral components (high frequency [HF] and low frequency [LF] power in normalized units) were analyzed for hourly 5 min segments and averaged for day- and nighttime. One hundred and fourteen athletes (50 % female, mean age 42 ± 7 years) were included. No significant gender difference was observed for training volume and 10-mile race time. Over the 24-h period, female athletes exhibited a higher HF and lower LF power for each hourly time-point. Female gender and endurance training hours were independent predictors of a higher HF and lower LF power. In female athletes, higher training hours were associated with a higher HF and lower LF power during nighttime. In male athletes, the same was true during daytime. In conclusion, female and male athletes showed a different circadian pattern of the training-related increase in markers of vagal tone. For a comparable amount of training volume, female athletes maintained their higher markers of vagal tone, possibly indicating a superior protection against exercise-induced ventricular arrhythmias.
Resumo:
RATIONALE: Nighttime agitation occurs frequently in patients with dementia and represents the number one burden on caregivers today. Current treatment options are few and limited due to substantial side effects. OBJECTIVES: The aim of the study was to measure the effect of the cannabinoid dronabinol on nocturnal motor activity. METHODS: In an open-label pilot study, six consecutive patients in the late stages of dementia and suffering from circadian and behavioral disturbances-five patients with Alzheimer's disease and one patient with vascular dementia-were treated with 2.5 mg dronabinol daily for 2 weeks. Motor activity was measured objectively using actigraphy. RESULTS: Compared to baseline, dronabinol led to a reduction in nocturnal motor activity (P=0.028). These findings were corroborated by improvements in Neuropsychiatric Inventory total score (P=0.027) as well as in subscores for agitation, aberrant motor, and nighttime behaviors (P<0.05). No side effects were observed. CONCLUSIONS: The study suggests that dronabinol was able to reduce nocturnal motor activity and agitation in severely demented patients. Thus, it appears that dronabinol may be a safe new treatment option for behavioral and circadian disturbances in dementia.
Resumo:
Melatonin has been postulated to have diverse properties, acting as an antioxidant, a neuroprotector, or a stabilizer within the circadian timing system, and is thus thought to be involved in the aging process and Alzheimer's disease (AD). We used computed tomography to determine the degree of pineal calcification (DOC), an intra-individual melatonin deficit marker, as well as the size of uncalcified pineal tissue, in 279 consecutive memory clinic outpatients (AD: 155; other dementia: 25; mild cognitive impairment: 33; depression: 66) and 37 age-matched controls. The size of uncalcified pineal tissue in patients with AD (mean 0.15 cm(2) [S.D. 0.24]) was significantly smaller than in patients with other types of dementia (0.26 [0.34]; P=0.038), with depression (0.28 [0.34]; P=0.005), or in controls (0.25 [0.31]; P=0.027). Additionally, the DOC in patients with AD (mean 76.2% [S.D. 26.6]) was significantly higher than in patients with other types of dementia (63.7 [34.7]; P=0.042), with depression (60.5 [33.8]; P=0.001), or in controls (64.5 [30.6]; P=0.021). These two findings may reflect two different aspects of melatonin in AD. On the one hand, the absolute amount of melatonin excretion capability, as indicated by uncalcified pineal volume, refers to the antioxidant properties of melatonin. On the other hand, the relative reduction in melatonin production capability in the individual, as indicated by DOC, refers to the circadian properties of melatonin.
Resumo:
Concentrations of corticosterone in brain areas of TO strain mice were measured by radioimmunoassay. The studies examined the effects of routine laboratory maneuvers, variation during the circadian peak, adrenalectomy, social defeat and acute injections of alcohol on these concentrations. Brief handling of mice increased corticosterone levels in plasma but not in striatum and reduced those in the hippocampus. Single injections of isotonic saline raised the plasma concentrations to a similar extent as the handling, but markedly elevated concentrations in the three brain regions. Five minutes exposure to a novel environment increased hippocampal and cerebral cortical corticosterone levels and striatal concentrations showed a larger rise. However, by 30 min in the novel environment, plasma concentrations rose further while those in striatum and cerebral cortex fell to control levels and hippocampal corticosterone remained elevated. Over the period of the circadian peak the hippocampal and striatal concentrations paralleled the plasma concentrations but cerebral cortical concentrations showed only small changes. Adrenalectomy reduced plasma corticosterone concentrations to below detectable levels after 48 h but corticosterone levels were only partially reduced in the hippocampus and striatum and remained unchanged in the cerebral cortex. Single or repeated social defeat increased both brain and plasma concentrations after 1 h. Acute injections of alcohol raised the regional brain levels in parallel with plasma concentrations. The results show that measurements of plasma concentrations do not necessarily reflect the levels in brain. The data also demonstrate that corticosterone levels can change differentially in specific brain regions. These results, and the residual hormone seen in the brain after adrenalectomy, are suggestive evidence for a local origin of central corticosterone.
Resumo:
Purpose The purpose of this study is to explore the periodical patterns of events and deaths related to cardiovascular disease (CVD), acute myocardial infarction (AMI) and stroke in Swiss adults (≥18years). Methods Mortality data for period 1969–2007 (N=869,863 CVD events) and hospitalization data for period 1997–2008 (N=959,990 CVD events) were used. The annual, weekly and circadian distribution of CVD-related deaths and events were assessed. Multivariate analysis was conducted using multinomial logistic regression adjusting for age, gender and calendar year and considering deaths from respiratory diseases, accidents or other causes as competitive events. Results CVD deaths and hospitalizations occurred less frequently in the summer months. Similar patterns were found for AMI and stroke. No significant weekly variation for CVD deaths was found. Stratification by age and gender showed subjects aged <65years to present a higher probability of dying on Mondays and Saturday, only for men. This finding was confirmed after multivariate adjustment. Finally, a circadian variation in CVD mortality was observed, with a first peak in the morning (8–12am) and a smaller second peak in the late afternoon (2–6pm). This pattern persisted after multivariate adjustment and was more pronounced for AMI than for stroke. Conclusion There is a periodicity of hospitalizations and deaths related to CVD, AMI and stroke in Switzerland. This pattern changes slightly according to the age and sex of the subjects. Although the underlying mechanisms are not fully identified, preventive measures should take into account these aspects to develop better strategies of prevention and management of CVD.
Resumo:
Ubiquitylation plays an important role in the control of Na⁺ homeostasis by the kidney. It is well established that the epithelial Na⁺ channel ENaC is regulated by the ubiquitin-protein ligase NEDD4-2, limiting ENaC cell surface expression and activity. Ubiquitylation can be reversed by the action of deubiquitylating enzymes (DUBs). One such DUB, USP2-45, was identified previously as an aldosterone-induced protein in the kidney and is also a circadian output gene. In heterologous expression systems, USP2-45 binds to ENaC, deubiquitylates it, and enhances channel density and activity at the cell surface. Because the role of USP2-45 in renal Na⁺ transport had not been studied in vivo, we investigated here the effect of Usp2 gene inactivation in this process. We demonstrate first that USP2-45 protein has a rhythmic expression with a peak at ZT12. Usp2-KO mice did not show any differences from wild-type littermates with respect to the diurnal control of Na⁺ or K⁺ urinary excretion and plasma levels either on a standard diet or after acute and chronic changes to low- and high-Na⁺ diets, respectively. Moreover, they had similar aldosterone levels on either a low- or high-Na⁺ diet. Blood pressure measurements using telemetry did not reveal variations compared with control mice. Usp2-KO mice did not display alterations in expression of genes involved in sodium homeostasis or the ubiquitin system, as evidenced by transcriptome analysis in the kidney. Our data suggest that USP2 does not play a primary role in the control of Na⁺ balance or blood pressure.