47 resultados para Ciliary marginal zone
em BORIS: Bern Open Repository and Information System - Berna - Suiça
Resumo:
Marginal zone B-cell lymphomas (MZLs) have been divided into 3 distinct subtypes (extranodal MZLs of mucosa-associated lymphoid tissue [MALT] type, nodal MZLs, and splenic MZLs). Nevertheless, the relationship between the subtypes is still unclear. We performed a comprehensive analysis of genomic DNA copy number changes in a very large series of MZL cases with the aim of addressing this question. Samples from 218 MZL patients (25 nodal, 57 MALT, 134 splenic, and 2 not better specified MZLs) were analyzed with the Affymetrix Human Mapping 250K SNP arrays, and the data combined with matched gene expression in 33 of 218 cases. MALT lymphoma presented significantly more frequently gains at 3p, 6p, 18p, and del(6q23) (TNFAIP3/A20), whereas splenic MZLs was associated with del(7q31), del(8p). Nodal MZLs did not show statistically significant differences compared with MALT lymphoma while lacking the splenic MZLs-related 7q losses. Gains of 3q and 18q were common to all 3 subtypes. del(8p) was often present together with del(17p) (TP53). Although del(17p) did not determine a worse outcome and del(8p) was only of borderline significance, the presence of both deletions had a highly significant negative impact on the outcome of splenic MZLs.
Resumo:
Three distinct categories of marginal zone lymphomas (MZLs) are currently recognized, principally based on their site of occurrence. They are thought to represent unique entities, but the relationship of one subtype with another is poorly understood. We investigated 17 non-splenic MZLs (seven nodal, 10 extranodal) by gene expression profiling to distinguish between subtypes and determine their cell of origin. Our findings suggest biological inter-relatedness of these entities despite occurrence at different locations and associations with possibly different aetiologies. Furthermore, the expression profiles of non-splenic MZL were similar to memory B cells.
Resumo:
Unique and shared cytogenetic abnormalities have been documented for marginal zone lymphomas (MZLs) arising at different sites. Recently, homozygous deletions of the chromosomal band 6q23, involving the tumor necrosis factor alpha-induced protein 3 (TNFAIP3, A20) gene, a negative regulator of NF-kappaB, were described in ocular adnexal MZL, suggesting a role for A20 as a tumor suppressor in this disease. Here, we investigated inactivation of A20 by DNA mutations or deletions in a panel of extranodal MZL (EMZL), nodal MZL (NMZL), and splenic MZL (SMZL). Inactivating mutations encoding truncated A20 proteins were identified in 6 (19%) of 32 MZLs, including 2 (18%) of 11 EMZLs, 3 (33%) of 9 NMZLs, and 1 (8%) of 12 SMZLs. Two additional unmutated nonsplenic MZLs also showed monoallelic or biallelic A20 deletions by fluorescent in situ hybridization (FISH) and/or SNP-arrays. Thus, A20 inactivation by either somatic mutation and/or deletion represents a common genetic aberration across all MZL subtypes, which may contribute to lymphomagenesis by inducing constitutive NF-kappaB activation.
Resumo:
Immune responses have the important function of host defense and protection against pathogens. However, the immune response also causes inflammation and host tissue injury, termed immunopathology. For example, hepatitis B and C virus infection in humans cause immunopathological sequel with destruction of liver cells by the host's own immune response. Similarly, after infection with lymphocytic choriomeningitis virus (LCMV) in mice, the adaptive immune response causes liver cell damage, choriomeningitis and destruction of lymphoid organ architecture. The immunopathological sequel during LCMV infection has been attributed to cytotoxic CD8(+) T cells. However, we now show that during LCMV infection CD4(+) T cells selectively induced the destruction of splenic marginal zone and caused liver cell damage with elevated serum alanin-transferase (ALT) levels. The destruction of the splenic marginal zone by CD4(+) T cells included the reduction of marginal zone B cells, marginal zone macrophages and marginal zone metallophilic macrophages. Functionally, this resulted in an impaired production of neutralizing antibodies against LCMV. Furthermore, CD4(+) T cells reduced B cells with an IgM(high)IgD(low) phenotype (transitional stage 1 and 2, marginal zone B cells), whereas other B cell subtypes such as follicular type 1 and 2 and germinal center/memory B cells were not affected. Adoptive transfer of CD4(+) T cells lacking different important effector cytokines and cytolytic pathways such as IFNγ, TNFα, perforin and Fas-FasL interaction did reveal that these cytolytic pathways are redundant in the induction of immunopathological sequel in spleen. In conclusion, our results define an important role of CD4(+) T cells in the induction of immunopathology in liver and spleen. This includes the CD4(+) T cell mediated destruction of the splenic marginal zone with consecutively impaired protective neutralizing antibody responses.
Resumo:
The distinction of CLL from other mature B-cell neoplasms, especially from leukemic forms of mantle cell lymphoma or splenic marginal zone lymphoma, can be difficult but has important prognostic and therapeutic implications. We measured CLLU1 (CLL upregulated gene1) mRNA by qPCR and found a highly significant difference between CLL and other lymphoid neoplasms (AUC 0.96, 95%CI 0.93-0.99). Based on our cut-off values we can predict CLL and other mature B-cell neoplasms with high probability (PPV 99% and 94%). Analysis of CLLU1 expression is a rapid and reliable tool that may facilitate the diagnosis of mature B-cell neoplasms especially in inconclusive cases.
Resumo:
Natural antibodies (NA) specific for infectious pathogens are found at low titer (usually <1:40) in the serum of healthy, non-immunized, individuals. Therefore, NA are part of the first line of defence against blood borne microorganisms. They directly neutralize viral infections or lyse pathogens by activating the complement cascade. In addition, recent studies highlighted their role in the pooling of infectious pathogens and other antigens to the spleen. This prevents infection of vital target organs and enhances the induction of adaptive immune responses. Specific T and B-cell responses are exclusively induced in highly organized secondary lymphoid organs including lymph nodes and the spleen. As a consequence, mice with disrupted microorganisation of lymphoid organs have defective adaptive immunity. In addition, some pathogens including lymphocytic choriomeningitis virus (LCMV), Leishmania and HIV developed strategies to destroy the splenic architecture in order to induce an acquired immunosuppression and to establish persistent infection. NA antibodies enhance early neutralizing antibodies in the absence of T help mainly by targeting antigen to the splenic marginal zone. In addition, by activating the complement cascade, NA enhance T cell and T-cell dependent B-cell responses. Therefore, natural antibodies are an important link between innate and adaptive immunity.
Resumo:
Maternal antibodies protect newborns whilst they are immunologically immature. This study shows that maternal antibodies can also shape the B cell repertoire of the offspring long after the maternal antibodies themselves become undetectable. V(H)DJ(H) gene-targeted (VI10) mice expressing a heavy chain specific for vesicular stomatitis virus (VSV) produce a 20-fold increased spontaneous titer of VSV-neutralizing antibodies. When transferred from mother to offspring, these antibodies prevented accumulation of Ag-specific transitional type 2 and marginal zone B cells with an activated phenotype and favored selection to the B cell follicles. This effect was B cell-intrinsic and lasted up to adulthood. The pups nursed by mothers producing specific antibodies developed higher endogenous antibody titers of this specificity which perpetuated the effects of specific B cell selection into the mature follicular compartment, presumably by blocking auto-Ag-dependent development of transitional type 2 B cells in the spleen. This repertoire change was functional, as following infection of adult mice with VSV, those pups that had received specific maternal antibodies as neonates had increased pre-immune titers and mounted strong early IgG neutralizing antibodies.
Resumo:
Mice that lack all beta1-class integrins in neurons and glia die prematurely after birth with severe brain malformations. Cortical hemispheres and cerebellar folia fuse, and cortical laminae are perturbed. These defects result from disorganization of the cortical marginal zone, where beta1-class integrins regulate glial endfeet anchorage, meningeal basement membrane remodeling, and formation of the Cajal-Retzius cell layer. Surprisingly, beta1-class integrins are not essential for neuron-glia interactions and neuronal migration during corticogenesis. The phenotype of the beta1-deficient mice resembles pathological changes observed in human cortical dysplasias, suggesting that defective integrin-mediated signal transduction contributes to the development of some of these diseases.
Resumo:
BCL2 is a target of somatic hypermutation in t(14;18) positive and also in a small fraction of t(14;18) negative diffuse large B-cell lymphoma (DLBCL), suggesting an aberrant role of somatic hypermutation (ASHM). To elucidate the prevalence of BCL2 mutations in lymphomas other than DLBCL, we Sanger-sequenced the hypermutable region of the BCL2 gene in a panel of 69 mature B-cell lymphomas, including Richter's syndrome DLBCL, marginal-zone lymphomas, post-transplant lymphoproliferative disorders, HIV-associated and common-variable immunodeficiency-associated DLBCL, all known to harbour ASHM-dependent mutations in other genes, as well as 16 t(14,18) negative and 21 t(14;18) positive follicular lymphomas (FLs). We also investigated the pattern of BCL2 mutations in longitudinal samples from 10 FL patients relapsing to FL or transforming to DLBCL (tFL). By direct sequencing, we found clonally represented BCL2 mutations in 2/16 (13%) of t(14;18) negative FLs, 2/16 (13%) HIV-DLBCLs, 1/9 (11%) of Richter's syndrome DLBCL, 1/17 (6%) of post-transplant lymphoproliferative disorders and 1/2 (50%) common-variable immunodeficiency-associated DLBCL. The proportion of mutated cases was significantly lower than in FLs carrying the t(14;18) translocation (15/21, 71%). However, the absence of t(14;18) by FISH or PCR and the molecular features of the mutations strongly suggest that BCL2 represents an additional target of ASHM in these entities. Analysis of the BCL2 mutation pattern in clonally related FL/FL and FL/tFL samples revealed two distinct scenarios of genomic evolution: (i) direct evolution from the antecedent FL clone, with few novel clonal mutations acquired by the tFL major clone, and (ii) evolution from a common mutated long-lived progenitor cell, which subsequently acquired distinct mutations in the FL and in the relapsed or transformed counterpart. Copyright © 2014 John Wiley & Sons, Ltd.
Resumo:
The paracaspase MALT1 plays an important role in immune receptor-driven signaling pathways leading to NF-κB activation. MALT1 promotes signaling by acting as a scaffold, recruiting downstream signaling proteins, as well as by proteolytic cleavage of multiple substrates. However, the relative contributions of these two different activities to T and B cell function are not well understood. To investigate how MALT1 proteolytic activity contributes to overall immune cell regulation, we generated MALT1 protease-deficient mice (Malt1(PD/PD)) and compared their phenotype with that of MALT1 knockout animals (Malt1(-/-)). Malt1(PD/PD) mice displayed defects in multiple cell types including marginal zone B cells, B1 B cells, IL-10-producing B cells, regulatory T cells, and mature T and B cells. In general, immune defects were more pronounced in Malt1(-/-) animals. Both mouse lines showed abrogated B cell responses upon immunization with T-dependent and T-independent Ags. In vitro, inactivation of MALT1 protease activity caused reduced stimulation-induced T cell proliferation, impaired IL-2 and TNF-α production, as well as defective Th17 differentiation. Consequently, Malt1(PD/PD) mice were protected in a Th17-dependent experimental autoimmune encephalomyelitis model. Surprisingly, Malt1(PD/PD) animals developed a multiorgan inflammatory pathology, characterized by Th1 and Th2/0 responses and enhanced IgG1 and IgE levels, which was delayed by wild-type regulatory T cell reconstitution. We therefore propose that the pathology characterizing Malt1(PD/PD) animals arises from an immune imbalance featuring pathogenic Th1- and Th2/0-skewed effector responses and reduced immunosuppressive compartments. These data uncover a previously unappreciated key function of MALT1 protease activity in immune homeostasis and underline its relevance in human health and disease.
Resumo:
Early implant placement is one of the treatment options after tooth extraction. Implant surgery is performed after a healing period of 4 to 8 weeks and combined with a simultaneous contour augmentation using the guided bone regeneration technique to rebuild stable esthetic facial hard- and soft-tissue contours.
Resumo:
to compare the 10-year marginal bone loss rates around implants supporting single-unit crowns in tobacco smokers with and without a history of treated periodontitis.
Resumo:
A 2-year-old boy with syndromic bilateral retinoblastoma resulting from a (del(13)(q12.3q14.3)) developed a recurrent tumor measuring 2.3 X 2.3 mm at the ora serrata 15 months following last treatment.
Resumo:
Primary ciliary dyskinesia (PCD) is a hereditary disorder of mucociliary clearance causing chronic upper and lower airways disease. We determined the number of patients with diagnosed PCD across Europe, described age at diagnosis and determined risk factors for late diagnosis. Centres treating children with PCD in Europe answered questionnaires and provided anonymous patient lists. In total, 223 centres from 26 countries reported 1,009 patients aged < 20 yrs. Reported cases per million children (for 5-14 yr olds) were highest in Cyprus (111), Switzerland (47) and Denmark (46). Overall, 57% were males and 48% had situs inversus. Median age at diagnosis was 5.3 yrs, lower in children with situs inversus (3.5 versus 5.8 yrs; p < 0.001) and in children treated in large centres (4.1 versus 4.8 yrs; p = 0.002). Adjusted age at diagnosis was 5.0 yrs in Western Europe, 4.8 yrs in the British Isles, 5.5 yrs in Northern Europe, 6.8 yrs in Eastern Europe and 6.5 yrs in Southern Europe (p < 0.001). This strongly correlated with general government expenditures on health (p < 0.001). This European survey suggests that PCD in children is under-diagnosed and diagnosed late, particularly in countries with low health expenditures. Prospective studies should assess the impact this delay might have on patient prognosis and on health economic costs across Europe.