2 resultados para Chiral drug

em BORIS: Bern Open Repository and Information System - Berna - Suiça


Relevância:

70.00% 70.00%

Publicador:

Resumo:

Pharmacokinetic and pharmacodynamic properties of a chiral drug can significantly differ between application of the racemate and single enantiomers. During drug development, the characteristics of candidate compounds have to be assessed prior to clinical testing. Since biotransformation significantly influences drug actions in an organism, metabolism studies represent a crucial part of such tests. Hence, an optimized and economical capillary electrophoretic method for on-line studies of the enantioselective drug metabolism mediated by cytochrome P450 enzymes was developed. It comprises a diffusion-based procedure, which enables mixing of the enzyme with virtually any compound inside the nanoliter-scale capillary reactor and without the need of additional optimization of mixing conditions. For CYP3A4, ketamine as probe substrate and highly sulfated γ-cyclodextrin as chiral selector, improved separation conditions for ketamine and norketamine enantiomers compared to a previously published electrophoretically mediated microanalysis method were elucidated. The new approach was thoroughly validated for the CYP3A4-mediated N-demethylation pathway of ketamine and applied to the determination of its kinetic parameters and the inhibition characteristics in presence of ketoconazole and dexmedetomidine. The determined parameters were found to be comparable to literature data obtained with different techniques. The presented method constitutes a miniaturized and cost-effective tool, which should be suitable for the assessment of the stereoselective aspects of kinetic and inhibition studies of cytochrome P450-mediated metabolic steps within early stages of the development of a new drug.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Background Tools to explore large compound databases in search for analogs of query molecules provide a strategically important support in drug discovery to help identify available analogs of any given reference or hit compound by ligand based virtual screening (LBVS). We recently showed that large databases can be formatted for very fast searching with various 2D-fingerprints using the city-block distance as similarity measure, in particular a 2D-atom pair fingerprint (APfp) and the related category extended atom pair fingerprint (Xfp) which efficiently encode molecular shape and pharmacophores, but do not perceive stereochemistry. Here we investigated related 3D-atom pair fingerprints to enable rapid stereoselective searches in the ZINC database (23.2 million 3D structures). Results Molecular fingerprints counting atom pairs at increasing through-space distance intervals were designed using either all atoms (16-bit 3DAPfp) or different atom categories (80-bit 3DXfp). These 3D-fingerprints retrieved molecular shape and pharmacophore analogs (defined by OpenEye ROCS scoring functions) of 110,000 compounds from the Cambridge Structural Database with equal or better accuracy than the 2D-fingerprints APfp and Xfp, and showed comparable performance in recovering actives from decoys in the DUD database. LBVS by 3DXfp or 3DAPfp similarity was stereoselective and gave very different analogs when starting from different diastereomers of the same chiral drug. Results were also different from LBVS with the parent 2D-fingerprints Xfp or APfp. 3D- and 2D-fingerprints also gave very different results in LBVS of folded molecules where through-space distances between atom pairs are much shorter than topological distances. Conclusions 3DAPfp and 3DXfp are suitable for stereoselective searches for shape and pharmacophore analogs of query molecules in large databases. Web-browsers for searching ZINC by 3DAPfp and 3DXfp similarity are accessible at www.gdb.unibe.ch webcite and should provide useful assistance to drug discovery projects.