41 resultados para Children Born
em BORIS: Bern Open Repository and Information System - Berna - Suiça
Resumo:
This study investigated whether children aged between 8 and 12 years born very preterm (VPT) and/or at very low birth weight (VLBW) performed lower than same-aged term-born controls in cognitive and behavioral aspects of three executive functions: inhibition, working memory, and shifting. Special attention was given to sex differences. Fifty-two VPT/VLBW children (26 girls, 50%) born in the cohort of 1998-2003 and 36 same-aged term-born children (18 girls, 50%) were recruited. As cognitive measures, children completed tasks of inhibition (Color-Word Interference Test, D-KEFS; Delis, Kaplan, & Kramer, 2001 ), working memory (digit span backwards, HAWIK-IV; Petermann & Petermann, 2008 ), and shifting (Trail Making Test, number-letter-switching, D-KEFS; Delis et al., 2001 ). As behavioral measures, mothers completed the Behavior Rating Inventory of Executive Function (BRIEF; Gioia, Isquith, Guy, & Kenworthy, 2000 ). Scales of interest were inhibit, working memory, and shift. Analyses of the cognitive aspects of executive functions revealed that VPT/VLBW children performed significantly lower than controls in the shifting task but not in the working memory and inhibition tasks. Analyses of behavioral aspects of executive functions revealed that VPT/VLBW children displayed more problems than the controls in working memory in everyday life but not in inhibition and shifting. No sex differences could be detected either in cognitive or behavioral aspects of executive functions. To conclude, cognitive and behavioral measures of executive functions were not congruent in VPT/VLBW children. In clinical practice, the combination of cognitive and behavioral instruments is required to disclose children's executive difficulties.
Resumo:
This cross-sectional study examined the performance of children born very preterm and/or at very low birth weight (VPT/VLBW) and same-aged term-born controls in three core executive functions: inhibition, working memory, and shifting. Children were divided into two age groups according to the median (young, 8.00-9.86 years; old, 9.87-12.99 years). The aims of the study were to investigate whether (a) VPT/VLBW children of both age groups performed poorer than controls (deficit hypothesis) or caught up with increasing age (delay hypothesis) and (b) whether VPT/VLBW children displayed a similar pattern of performance increase in executive functions with advancing age compared with the controls. Fifty-six VPT/VLBW children born in the cohort of 1998-2003 and 41 healthy-term-born controls were recruited. All children completed tests of inhibition (Color-Word Interference Task, Delis-Kaplan Executive Function System (D-KEFS)), working memory (Digit Span Backwards, HAWIK-IV), and shifting (Trail Making Test, Number-Letter Sequencing, D-KEFS). Results revealed that young VPT/VLBW children performed significantly poorer than the young controls in inhibition, working memory, and shifting, whereas old VPT/VLBW children performed similar to the old controls across all three executive functions. Furthermore, the frequencies of impairment in inhibition, working memory and shifting were higher in the young VPT/VLBW group compared with the young control group, whereas frequencies of impairment were equal in the old groups. In both VPT/VLBW children and controls, the highest increase in executive performance across the ages of 8 to 12 years was observed in shifting, followed by working memory, and inhibition.
Resumo:
Background: Children born very preterm (<32 weeks’ gestational age; VPT) and/or very low birth weight (<1500 g; VLBW) are at high risk of deficits in executive functions, namely inhibition, working memory, and shifting. Both, gestational age and socioeconomic factors, such as parental education, are known to influence executive functions, with children born at lower gestational age and with lower educated parents displaying worse executive skills. This study aimed to investigate if maternal and paternal education moderated the relationship between gestational age and executive functions in VPT/VLBW children aged 8-12 years. It was hypothesised that the disadvantageous effect of low gestational age could be buffered more easily in families with higher educational background. Methods: Sixty VPT/VLBW children born in the cohort of 1998-2003 were recruited. All children completed executive function tasks (inhibition, working memory, and shifting). Results: There was a significant dose-response-relationship between gestational age and inhibition, with children being born at earlier gestational age showing worse inhibition. However, neither maternal nor paternal education moderated the relationship between gestational age and executive functions significantly. Conclusion: children than parental education. The disadvantageous effect of low gestational age was equal in children with higher and lower educated parents. However, the impact of gestational age and parental education on executive functions may differ depending on the socioeconomic spectrum of the study sample.
Resumo:
Aims: This study investigated whether children aged between 8 - 12 years born very preterm (VPT) and/or at very low birth weight (VLBW) performed lower than same-aged term-born controls in cognitive and behavioral aspects of three executive functions: inhibition, working memory, and shifting. Special attention was given to sex differences. Methods: Fifty-two VPT/VLBW children (26 girls) born in the cohort of 1998–2003 at the Children’s University Hospital in Bern, Switzerland, and 36 same-aged term-born controls (18 girls) were recruited. As cognitive measures, children completed tasks of inhibition (Colour-Word Interference Test, D-KEFS), working memory (digit span backwards, WISC-IV) and shifting (Trail Making Test, number-letter switching, D-KEFS). As behavioral measures, mothers completed the Behavior Rating Inventory of Executive Function (BRIEF), assessing executive functions in everyday life.
Resumo:
Aims: To examine the effect of memory strategy training on different aspects of memory in children born very preterm and to determine whether there is a generalization of the training effect to non-trained functions. The influence of individual factors such as age and performance level on the training success will be determined. Methods: In a randomized, controlled and blinded clinical trial, 46 children born very preterm (aged 7-12 years) were allocated to a memory strategy training (MEMO-Training, n=23) or a control group (n=23). Neuropsychological assessment was performed before, immediately after the training and at a 6-month follow-up. In the MEMO-Training, five different memory strategies were introduced and practiced in a one-to-one setting (4 hour-long training sessions over 4 weeks, 20 homework sessions). Results: A significant training-related improvement occurred in trained aspects of memory (verbal and visual learning and recall, verbal working memory) and in non-trained functions (inhibition, mental arithmetic). No performance increase was observed in the control group. At six months follow-up, there was a significant training-related improvement of visual working memory. Age and performance level before the training predicted the training success significantly. Conclusion: Teaching memory strategies is an effective way to improve different aspects of memory but also non-trained functions such as inhibition and mental arithmetic in children born very preterm. Age and performance level influence the success of memory strategy training. These results highlight the importance of teaching children memory strategies to reduce scholastic problems.
Resumo:
OBJECTIVE In Europe, growth hormone (GH) treatment for children born small for gestational age (SGA) can only be initiated after 4 years of age. However, younger age at treatment initiation is a predictor of favourable response. To assess the effect of GH treatment on early growth and cognitive functioning in very young (<30 months), short-stature children born SGA. DESIGN A 2-year, randomized controlled, multicentre study (NCT00627523; EGN study), in which patients received either GH treatment or no treatment for 24 months. PATIENTS Children aged 19-29 months diagnosed as SGA at birth, and for whom sufficient early growth data were available, were eligible. Patients were randomized (1:1) to GH treatment (Genotropin(®) , Pfizer Inc.) at a dose of 0·035 mg/kg/day by subcutaneous injection, or no treatment. MEASUREMENTS The primary objective was to assess the change from baseline in height standard deviation score (SDS) after 24 months of GH treatment. RESULTS Change from baseline in height SDS was significantly greater in the GH treatment vs control group at both month 12 (1·03 vs 0·14) and month 24 (1·63 vs 0·43; both P < 0·001). Growth velocity SDS was significantly higher in the GH treatment vs control group at 12 months (P < 0·001), but not at 24 months. There was no significant difference in mental or psychomotor development indices between the two groups. CONCLUSIONS GH treatment for 24 months in very young short-stature children born SGA resulted in a significant increase in height SDS compared with no treatment.
Resumo:
Background: Neural structural abnormalities as well as cognitive difficulties in language processing have been described in children born very preterm (<32 weeks of gestational age and/or <1500 g birth weight). These findings raise the question how premature birth is related to neural language organisation and lateralisation. The aim of the study was to test the following hypotheses: a) VPT/VLBW and control children show different language organisation b) language organisation in VPT/VLBW children is more bilateral compared to language organisation in control children c) positive correlations between language performance measures and language lateralisation exist in VPT/VLBW children and controls. Method: Brain activity was measured during a phonologic detection task in 56 very preterm born children and 38 term born control children aged 7 to 12 years using functional Magnetic Resonance Imaging. General IQ, verbal IQ, verbal fluency and reading comprehension were assessed outside the scanner. Results: Language organisation and lateralisation did not differ in very preterm and control children in overall comparisons. However, in very preterm children lateralisation increased between the age of 7 to 12 years. This correlation was not found in control children. Language organisation in very preterm children was bilateral in young children and left-sided in old children, whereas language organisation in control children was left-sided in the young and old age group. Frontal lateralisation correlated with General IQ in controls, but no other correlations between lateralisation and verbal performance were found. Discussion: The results of this study suggest different developmental patterns of language processing in very preterm born and term born control children. While very preterm born children showed atypical language organisation and lateralisation in younger years, typical left-sided patterns were found at the age of 12 years.
Resumo:
Background: Little research has been conducted to assess the effect of using memory training with school-aged children who were born very preterm. This study aimed to determine whether two types of memory training approaches resulted in an improvement of trained functions and/or a generalization of the training effect to non-trained cognitive domains. Methods: Sixty-eight children born very preterm (7¬-12 years) were randomly allocated to a group undertaking memory strategy training (n=23), working memory training (n=22), or a waiting control group (n=23). Neuropsychological assessment was performed before and immediately after the training or waiting period, and at a six-month follow-up. Results: In both training groups, significant improvement of different memory domains occurred immediately after training (near transfer). Improvement of non-trained arithmetic performance was observed after strategy training (far transfer). At a six-month follow-up assessment, children in both training groups demonstrated better working memory, and their parents rated their memory functions to be better than controls. Performance level before the training was negatively associated with the training gain. Conclusions: These results highlight the importance of cognitive interventions, in particular the teaching of memory strategies, in very preterm-born children at early school age to strengthen cognitive performance and prevent problems at school.
Resumo:
Compromised intrauterine fetal growth leading to low birth weight (<2500 g) is associated with adulthood renal and cardiovascular disease. The aim of this study was to assess the effect of salt intake on blood pressure (salt sensitivity) in children with low birth weight. White children (n=50; mean age: 11.3+/-2.1 years) born with low (n=35) or normal (n=15) birth weight and being either small or appropriate for gestational age (n=25 in each group) were investigated. The glomerular filtration rate was calculated using the Schwartz formula, and renal size was measured by ultrasound. Salt sensitivity was assigned if mean 24-hour blood pressure increased by >or=3 mm Hg on a high-salt diet as compared with a controlled-salt diet. Baseline office blood pressure was higher and glomerular filtration rate lower in children born with low birth weight as compared with children born at term with appropriate weight (P<0.05). Salt sensitivity was present in 37% and 47% of all of the low birth weight and small for gestational age children, respectively, higher even than healthy young adults from the same region. Kidney length and volume (both P<0.0001) were reduced in low birth weight children. Salt sensitivity inversely correlated with kidney length (r(2)=0.31; P=0.005) but not with glomerular filtration rate. We conclude that a reduced renal mass in growth-restricted children poses a risk for a lower renal function and for increased salt sensitivity. Whether the changes in renal growth are causative or are the consequence of the same abnormal "fetal programming" awaits clarification.
Resumo:
BACKGROUND Preterm birth, low birth weight, and infant catch-up growth seem associated with an increased risk of respiratory diseases in later life, but individual studies showed conflicting results. OBJECTIVES We performed an individual participant data meta-analysis for 147,252 children of 31 birth cohort studies to determine the associations of birth and infant growth characteristics with the risks of preschool wheezing (1-4 years) and school-age asthma (5-10 years). METHODS First, we performed an adjusted 1-stage random-effect meta-analysis to assess the combined associations of gestational age, birth weight, and infant weight gain with childhood asthma. Second, we performed an adjusted 2-stage random-effect meta-analysis to assess the associations of preterm birth (gestational age <37 weeks) and low birth weight (<2500 g) with childhood asthma outcomes. RESULTS Younger gestational age at birth and higher infant weight gain were independently associated with higher risks of preschool wheezing and school-age asthma (P < .05). The inverse associations of birth weight with childhood asthma were explained by gestational age at birth. Compared with term-born children with normal infant weight gain, we observed the highest risks of school-age asthma in children born preterm with high infant weight gain (odds ratio [OR], 4.47; 95% CI, 2.58-7.76). Preterm birth was positively associated with an increased risk of preschool wheezing (pooled odds ratio [pOR], 1.34; 95% CI, 1.25-1.43) and school-age asthma (pOR, 1.40; 95% CI, 1.18-1.67) independent of birth weight. Weaker effect estimates were observed for the associations of low birth weight adjusted for gestational age at birth with preschool wheezing (pOR, 1.10; 95% CI, 1.00-1.21) and school-age asthma (pOR, 1.13; 95% CI, 1.01-1.27). CONCLUSION Younger gestational age at birth and higher infant weight gain were associated with childhood asthma outcomes. The associations of lower birth weight with childhood asthma were largely explained by gestational age at birth.