3 resultados para Children’s Environmental behaviours

em BORIS: Bern Open Repository and Information System - Berna - Suiça


Relevância:

30.00% 30.00%

Publicador:

Resumo:

This study investigated the effects of different environmental treatments and personality types on aggression at mixing of newly weaned domestic piglets. From birth to weaning, 16 litters were housed with their dams in either barren (B) or larger, substrate-enriched (E) environments. At 15 days old, piglets were classified as 'high' (HR) or low resistant' (LR) in a manual restraint test (backtest), which is thought to identify proactive (HR) and reactive (LR) stress coping strategies that may reflect different personality types. At 30 days old, 128 piglets were weaned, relocated and mixed into 32 pens comprising two HR and two LR unfamiliar pigs, balanced for sex and weaning weight. Eight B and eight E groups changed environmental condition whereas the others remained in the same type of environment. Number and duration of fights. fight outcomes and unilateral fighting were scored for 5 h post-mixing and skin lesions were counted before and 5 h, 1 day and 2 days after mixing. On the day following weaning, fighting and also exploratory and oral manipulative behaviours were measured for 6 h. Generalized Linear Mixed Model analyses suggested interactions between pre-weaning environment, post-weaning environment and personality type. Overall, pre-weaning E pigs had longer fights at weaning and mixing (P=0.01) and fought for longer on the next day (P=0.02) than pre-weaning B pigs, and inflicted more skin lesions (P=0.02). Post-weaning enrichment did not affect fighting at mixing but reduced the time spent fighting the next day (P=0.03). Personality had subtle and environment-dependent effects on fighting, and influenced the "structure" rather than the amount of aggressive behaviour. HR pigs, for instance, bullied (i.e. chased surrendering pigs) more often (P=0.009) and their fighting behaviour was less affected by their relative body weight than that of LR pigs. Post-weaning E pigs showed relatively higher levels of exploratory behaviour (P=0.02) and less oral manipulative behaviour (P=0.04) than post-weaning B pigs. In particular, switching from a good quality environment (E) to a worse quality one (B) at weaning decreased exploratory behaviour on the next day, especially for LR pigs, who also tended to fight with and orally manipulate their pen mates more in that condition, and seemed to be more affected by a deterioration of the environment. Overall, pre-weaning enrichment increased aggression after weaning whereas post-weaning enrichment reduced it, and personality type related to some aspects of fighting behaviour. (C) 2011 Elsevier B.V. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

It has been widely accepted for some time that species-appropriate environmental enrichment is important for the welfare of research animals, but its impact on research data initially received little attention. This has now changed, as the use of enrichment as one element of routine husbandry has expanded. In addition to its use in the care of larger research animals, such as nonhuman primates, it is now being used to improve the environments of small research animals, such as rodents, which are used in significantly greater numbers and in a wide variety of studies. Concern has been expressed that enrichment negatively affects both experimental validity and reproducibility. However, when a concise definition of enrichment is used, with a sound understanding of the biology and behaviour of the animal as well as the research constraints, it becomes clear that the welfare of research animals can be enhanced through environmental enrichment without compromising their purpose. Indeed, it is shown that the converse is true: the provision of suitable enrichment enhances the well-being of the animal, thereby refining the animal model and improving the research data. Thus, the argument is made that both the validity and reproducibility of the research are enhanced when proper consideration is given to the research animal's living environment and the animal's opportunities to express species-typical behaviours.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

With rising public concern for animal welfare, many major food chains and restaurants are changing their policies, strictly buying their eggs from non-cage producers. However, with the additional space in these cage-free systems to perform natural behaviours and movements comes the risk of injury. We evaluated the ability to maintain balance in adult laying hens with health problems (footpad dermatitis, keel damage, poor wing feather cover; n = 15) using a series of environmental challenges and compared such abilities with those of healthy birds (n = 5). Environmental challenges consisted of visual and spatial constraints, created using a head mask, perch obstacles, and static and swaying perch states. We hypothesized that perch movement, environmental challenges, and diminished physical health would negatively impact perching performance demonstrated as balance (as measured by time spent on perch and by number of falls of the perch) and would require more exaggerated correctional movements.We measured perching stability whereby each bird underwent eight 30-second trials on a static and swaying perch: with and without disrupted vision (head mask), with and without space limitations (obstacles) and combinations thereof. Video recordings (600 Hz) and a three-axis accelerometer/gyroscope (100 Hz) were used to measure the number of jumps/falls, latencies to leave the perch, as well as magnitude and direction of both linear and rotational balance-correcting movements. Laying hens with and without physical health problems, in both challenged and unchallenged environments, managed to perch and remain off the ground. We attribute this capacity to our training of the birds. Environmental challenges and physical state had an effect on the use of accelerations and rotations to stabilize themselves on a perch. Birds with physical health problems performed a higher frequency of rotational corrections to keep the body centered over the perch, whereas, for both health categories, environmental challenges required more intense and variable movement corrections. Collectively, these results provide novel empirical support for the effectiveness of training, and highlight that overcrowding, visual constraints, and poor physical health all reduce perching performance.