8 resultados para Chickens.

em BORIS: Bern Open Repository and Information System - Berna - Suiça


Relevância:

20.00% 20.00%

Publicador:

Resumo:

The documented data regarding the three-dimensional structure of the air capillaries (ACs), the ultimate sites of gas exchange in the avian lung is contradictory. Further, the mode of gas exchange, described as cross-current has not been clearly elucidated. We studied the temporal and spatial arrangement of the terminal air conduits of the chicken lung and their relationship with the blood capillaries (BCs) in embryos as well as the definitive architecture in adults. Several visualization techniques that included corrosion casting, light microscopy as well as scanning and transmission electron microscopy were used. Two to six infundibulae extend from each atrium and give rise to numerous ACs that spread centrifugally. Majority of the ACs are tubular structures that give off branches, which anastomose with their neighboring cognates. Some ACs have globular shapes and a few are blind-ending tapering tubes. During inauguration, the luminal aspects of the ACs are characterized by numerous microvillus-like microplicae, which are formed during the complex processes of cell attenuation and canalization of the ACs. The parabronchial exchange BCs, initially inaugurated as disorganized meshworks, are reoriented via pillar formation to lie predominantly orthogonal to the long axes of the ACs. The remodeling of the retiform meshworks by intussusceptive angiogenesis essentially accomplishes a cross-current system at the gas exchange interface in the adults, where BCs form ring-like patterns around the ACs, thus establishing a cross-current system. Our findings clarify the mode of gas exchange in the parabronchial mantle and illuminate the basis for the functional efficiency of the avian lung.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

AIMS: To get an overview of genotypes and antibiotic resistances in Swiss Campylobacter jejuni implicated in human gastroenteritis and to examine the association with isolates from chickens. METHODS AND RESULTS: Multilocus sequence typing (MLST) and flaB typing were applied to 136 human clinical isolates. Phenotypic resistance to 12 antimicrobials and genotypic resistance to macrolides and quinolones were determined. MLST resulted in 35 known and six new sequence types (ST). The flaB analysis revealed 35 different types, which - in combination with MLST - increased the resolution of the typing approach. Resistance to quinolones, tetracycline and ampicillin was found in 37.5, 33.1 and 8.1% of the isolates, respectively, whereas macrolide resistance was found only once. Genotypic and phenotypic resistance correlated in all cases. A comparison to Camp. jejuni isolated from slaughtered chickens was performed. While 86% of the quinolone-sensitive human isolates showed overlapping MLST-flaB types with those of chicken origin, resistant strains showed only 39% of matching types. CONCLUSION: Mainly quinolone-sensitive Camp. jejuni strains implicated in human campylobacteriosis showed matching genotypes with isolates originating from chickens. SIGNIFICANCE AND IMPACT OF THE STUDY: A large proportion of human cases in Switzerland are likely to originate from domestic chickens, confirming that prevention measures in the poultry production are important.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The objective of this study was to compare the effects of 3 different fluid types for resuscitation after experimentally induced hemorrhagic shock in anesthetized chickens and to evaluate partial pressures of carbon dioxide measured in arterial blood (Paco2), with a transcutaneous monitor (TcPco2), with a gastric intraluminal monitor (GiPco2), and by end tidal measurements (Etco2) under stable conditions and after induced hemorrhagic shock. Hemorrhagic shock was induced in 40 white leghorn chickens by removing 50% of blood volume by phlebotomy under general anesthesia. Birds were divided into 4 groups: untreated (control group) and treated with intravenous hetastarch (haes group), with a hemoglobin-based oxygen carrier (hemospan group), or by autotransfusion (blood group). Respiratory rates, heart rates, and systolic arterial blood pressure (SAP) were compared at 8 time points (baseline [T0]; at the loss of 10% [T10%], 20% [T20%], 30% [T30%], 40% [T40%], and 50% [T50%] of blood volume; at the end of resuscitation [RES]; and at the end of anesthesia [END]). Packed cell volume (PCV) and blood hemoglobin content were compared at 6 time points (T0, T50%, RES, and 1, 3, and 7 days after induced hemorrhagic shock). Measurements of Paco2, TcPco2, GiPco2, and Etco2 were evaluated at 2 time points (T0 and T50%), and venous lactic acid concentrations were evaluated at 3 time points (T0, T50%, and END). No significant differences were found in mortality, respiratory rate, heart rate, PCV, or hemoglobin values among the 4 groups. Birds given fluid resuscitation had significantly higher SAPs after fluid administration than did birds in the control group. In all groups, PCV and hemoglobin concentrations began to rise by day 3 after phlebotomy, and baseline values were reached 7 days after blood removal. At T0, TcPco2 did not differ significantly from Paco2, but GiPco2 and Etco2 differed significantly from Paco2. After hemorrhagic shock, GiPco2 and TcPco2 differed significantly from Paco2. The TcPco2 or GiPco2 values did not differ significantly at any time point in birds that survived or died in any of the groups and across all groups. These results showed no difference in mortality in leghorn chickens treated with fluid resuscitation after hemorrhagic shock and that the PCV and hemoglobin concentrations increased by 3 days after acute hemorrhage with or without treatment. The different CO2 measurements document changes in CO2-values consistent with poor perfusion and may prove useful for serial evaluation of responses to shock and shock treatment.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Feather pecking in laying hens is a serious behavioral problem that is often associated with feather eating. The intake of feathers may influence the gut microbiota and its metabolism. The aim of this study was to determine the effect of 2 different diets, with or without 5% ground feathers, on the gut microbiota and the resulting microbial fermentation products and to identify keratin-degrading bacteria in chicken digesta. One-day-old Lohmann-Selected Leghorn chicks were divided into 3 feeding groups: group A (control), B (5% ground feathers in the diet), and C, in which the control diet was fed until wk 12 and then switched to the 5% feather diet to study the effect of time of first feather ingestion. The gut microbiota was analyzed by cultivation and denaturing gradient gel electrophoresis of ileum and cecum digesta. Short-chain fatty acids, ammonia, and lactate concentrations were measured as microbial metabolites. The concentration of keratinolytic bacteria increased after feather ingestion in the ileum (P < 0.001) and cecum (P = 0.033). Bacterial species that hydrolyzed keratin were identified as Enterococcus faecium, Lactobacillus crispatus, Lactobacillus reuteri-like species (97% sequence homology), and Lactobacillus salivarius-like species (97% sequence homology). Molecular analysis of cecal DNA extracts showed that the feather diet lowered the bacterial diversity indicated by a reduced richness (P < 0.001) and shannon (P = 0.012) index. The pattern of microbial metabolites indicated some changes, especially in the cecum. This study showed that feather intake induced an adaptation of the intestinal microbiota in chickens. It remains unclear to what extent the changed metabolism of the microbiota reflects the feather intake and could have an effect on the behavior of the hens.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Campylobacteriosis is the most frequent zoonosis in developed countries and various domestic animals can function as reservoir for the main pathogens Campylobacter jejuni and Campylobacter coli. In the present study we compared population structures of 730 C. jejuni and C. coli from human cases, 610 chicken, 159 dog, 360 pig and 23 cattle isolates collected between 2001 and 2012 in Switzerland. All isolates had been typed with multi locus sequence typing (MLST) and flaB-typing and their genotypic resistance to quinolones was determined. We used complementary approaches by testing for differences between isolates from different hosts with the proportion similarity as well as the fixation index and by attributing the source of the human isolates with Bayesian assignment using the software STRUCTURE. Analyses were done with MLST and flaB data in parallel and both typing methods were tested for associations of genotypes with quinolone resistance. Results obtained with MLST and flaB data corresponded remarkably well, both indicating chickens as the main source for human infection for both Campylobacter species. Based on MLST, 70.9% of the human cases were attributed to chickens, 19.3% to cattle, 8.6% to dogs and 1.2% to pigs. Furthermore we found a host independent association between sequence type (ST) and quinolone resistance. The most notable were ST-45, all isolates of which were susceptible, while for ST-464 all were resistant.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Many Member States of the European Union (EU) currently monitor antimicrobial resistance in zoonotic agents, including Salmonella and Campylobacter. According to Directive 2003/99/EC, Member States shall ensure that the monitoring provides comparable data on the occurrence of antimicrobial resistance. The European Commission asked the European Food Safety Authority to prepare detailed specifications for harmonised schemes for monitoring antimicrobial resistance. The objective of these specifications is to lay down provisions for a monitoring and reporting scheme for Salmonella in fowl (Gallus gallus), turkeys and pigs, and for Campylobacter jejuni and Campylobacter coli in broiler chickens. The current specifications are considered to be a first step towards a gradual implementation of comprehensive antimicrobial resistance monitoring at the EU level. These specifications propose to test a common set of antimicrobial agents against available cut-off values and a specified concentration range to determine the susceptibility of Salmonella and Campylobacter. Using isolates collected through programmes in which the sampling frame covers all epidemiological units of the national production, the target number of Salmonella isolates to be included in the antimicrobial resistance monitoring per Member State per year is 170 for each study population (i.e., laying hens, broilers, turkeys and slaughter pigs). The target number of Campylobacter isolates to be included in the antimicrobial resistance monitoring per Member State per year is 170 for each study population (i.e., broilers). The results of the antimicrobial resistance monitoring are assessed and reported in the yearly national report on trends and sources of zoonoses, zoonotic agents and antimicrobial resistance.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The envelope of influenza A viruses contains two large antigens, hemagglutinin (HA) and neuraminidase (NA). Conventional influenza virus vaccines induce neutralizing antibodies that are predominantly directed to the HA globular head, a domain that is subject to extensive antigenic drift. Antibodies directed to NA are induced at much lower levels, probably as a consequence of the immunodominance of the HA antigen. Although antibodies to NA may affect virus release by inhibiting the sialidase function of the glycoprotein, the antigen has been largely neglected in past vaccine design. In this study, we characterized the protective properties of monospecific immune sera that were generated by vaccination with recombinant RNA replicon particles encoding NA. These immune sera inhibited hemagglutination in an NA subtype-specific and HA subtype-independent manner and interfered with infection of MDCK cells. In addition, they inhibited the sialidase activities of various influenza viruses of the same and even different NA subtypes. With this, the anti-NA immune sera inhibited the spread of H5N1 highly pathogenic avian influenza virus and HA/NA-pseudotyped viruses in MDCK cells in a concentration-dependent manner. When chickens were immunized with NA recombinant replicon particles and subsequently infected with low-pathogenic avian influenza virus, inflammatory serum markers were significantly reduced and virus shedding was limited or eliminated. These findings suggest that NA antibodies can inhibit virus dissemination by interfering with both virus attachment and egress. Our results underline the potential of high-quality NA antibodies for controlling influenza virus replication and place emphasis on NA as a vaccine antigen. IMPORTANCE The neuraminidase of influenza A viruses is a sialidase that acts as a receptor-destroying enzyme facilitating the release of progeny virus from infected cells. Here, we demonstrate that monospecific anti-NA immune sera inhibited not only sialidase activity, but also influenza virus hemagglutination and infection of MDCK cells, suggesting that NA antibodies can interfere with virus attachment. Inhibition of both processes, virus release and virus binding, may explain why NA antibodies efficiently blocked virus dissemination in vitro and in vivo. Anti-NA immune sera showed broader reactivity than anti-HA sera in hemagglutination inhibition tests and demonstrated cross-subtype activity in sialidase inhibition tests. These remarkable features of NA antibodies highlight the importance of the NA antigen for the development of next-generation influenza virus vaccines.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Based on bacterial genomic data, we developed a one-step multiplex PCR assay to identify Salmonella and simultaneously differentiate the two invasive avian-adapted S. enterica serovar Gallinarum biotypes Gallinarum and Pullorum, and the most frequent, specific, and asymptomatic colonizers of chickens, serovars Enteritidis, Heidelberg, and Kentucky.