3 resultados para Chevron
em BORIS: Bern Open Repository and Information System - Berna - Suiça
Resumo:
BACKGROUND Atrial tachycardias (AT) during or after ablation of atrial fibrillation frequently pose a diagnostic challenge. We hypothesized that both the patterns and the timing of coronary sinus (CS) activation could facilitate AT mapping. METHODS AND RESULTS A total of 140 consecutive postpersistent atrial fibrillation ablation patients with sustained AT were investigated by conventional mapping. CS activation pattern was defined as chevron or reverse chevron when the activations recorded on both the proximal and the distal CS dipoles were latest or earliest, respectively. The local activation of mid-CS was timed with reference to Ppeak-Ppeak (P-P) interval in lead V1. A ratio, mid-CS activation time to AT cycle length, was computed. Of 223 diagnosed ATs, 124 were macroreentrant (56%) and 99 were centrifugal (44%). When CS activation was chevron/reverse chevron (n=44; 20%), macroreentries were mostly roof dependent. With reference to P-P interval, mid-CS activation timing showed specific consistency for peritricuspid and perimitral AT. Proximal to distal CS activation pattern and mid-CS activation at 50% to 70% of the P-P interval (n=30; 13%) diagnosed peritricuspid AT with 81% sensitivity and 89% specificity. Distal to proximal CS activation and mid-CS activation at 10% to 40% of the P-P interval (n=44; 20%) diagnosed perimitral AT with 88% sensitivity and 75% specificity. CONCLUSIONS The analysis of the patterns and timing of CS activation provides a rapid stratification of most likely macroreentrant ATs and points toward the likely origin of centrifugal ATs. It can be included in a stepwise diagnostic approach to rapidly select the most critical mapping maneuvers.
Resumo:
Within the context of exoplanetary atmospheres, we present a comprehensive linear analysis of forced, damped, magnetized shallow water systems, exploring the effects of dimensionality, geometry (Cartesian, pseudo-spherical, and spherical), rotation, magnetic tension, and hydrodynamic and magnetic sources of friction. Across a broad range of conditions, we find that the key governing equation for atmospheres and quantum harmonic oscillators are identical, even when forcing (stellar irradiation), sources of friction (molecular viscosity, Rayleigh drag, and magnetic drag), and magnetic tension are included. The global atmospheric structure is largely controlled by a single key parameter that involves the Rossby and Prandtl numbers. This near-universality breaks down when either molecular viscosity or magnetic drag acts non-uniformly across latitude or a poloidal magnetic field is present, suggesting that these effects will introduce qualitative changes to the familiar chevron-shaped feature witnessed in simulations of atmospheric circulation. We also find that hydrodynamic and magnetic sources of friction have dissimilar phase signatures and affect the flow in fundamentally different ways, implying that using Rayleigh drag to mimic magnetic drag is inaccurate. We exhaustively lay down the theoretical formalism (dispersion relations, governing equations, and time-dependent wave solutions) for a broad suite of models. In all situations, we derive the steady state of an atmosphere, which is relevant to interpreting infrared phase and eclipse maps of exoplanetary atmospheres. We elucidate a pinching effect that confines the atmospheric structure to be near the equator. Our suite of analytical models may be used to develop decisively physical intuition and as a reference point for three-dimensional magnetohydrodynamic simulations of atmospheric circulation.
Resumo:
BACKGROUND Trans-olecranon chevron osteotomies (COs) remain the gold standard surgical approach to type C fractures of the distal humerus. This technique is associated with a high complication rate and development of an extra-articular olecranon osteotomy may be advantageous. The aim of this study was to compare the load to failure of COs with extra-articular oblique osteotomies (OOs) as well as modified, extra-articular step osteotomies (SOs). METHODS These three osteotomies and their subsequent fixation utilizing a standardized tension band wiring technique were tested in 42 composite analog ulnae models at 20° and 70° of flexion. Triceps loading was simulated with a servo hydraulic testing machine. All specimens were isometrically loaded until failure. Kinematic and force data, as well as interfragmentary motion were recorded. RESULTS At 70°, CO failed at a mean load of 963N (SD 104N), the OO at 1512N (SD 208N) and the SO at 1484N (SD 153N), (P<0.001). At 20°, CO failed at a mean load of 707N (SD 104N) and OO at 1009N (SD 85N) (P=0.006). The highest load to failure was observed for the SO, which was 1277N (SD 172N). The load to failure of the SO was significantly higher than the CO as well as the OO. CONCLUSION Extra-articular osteotomies showed a significantly higher load to failure in comparison to traditional CO. At near full extension (20° of flexion), this biomechanical advantage was further enhanced by a step-cut modification of the extra-articular oblique osteotomy.