2 resultados para Chemoenzymatic Epoxidation
em BORIS: Bern Open Repository and Information System - Berna - Suiça
Resumo:
Agrocybe aegerita peroxidase/peroxygenase (AaP) is an extracellular fungal biocatalyst that selectively hydroxylates the aromatic ring of naphthalene. Under alkaline conditions, the reaction proceeds via the formation of an intermediary product with a molecular mass of 144 and a characteristic UV absorption spectrum (A(max) 210, 267, and 303 nm). The compound was semistable at pH 9 but spontaneously hydrolyzed under acidic conditions (pH<7) into 1-naphthol as major product and traces of 2-naphthol. Based on these findings and literature data, we propose naphthalene 1,2-oxide as the primary product of AaP-catalyzed oxygenation of naphthalene. Using (18)O-labeled hydrogen peroxide, the origin of the oxygen atom transferred to naphthalene was proved to be the peroxide that acts both as oxidant (primary electron acceptor) and oxygen source.
Resumo:
We describe the synthesis of (5 S )-5- C -butylthymidine ( 5a ), of the (5 S )-5- C -butyl- and the (5 S )-5- C -isopentyl derivatives 16a and 16b of 2-deoxy-5-methylcytidine, as well as of the corresponding cyanoethyl phosphoramidites 9a , b and 14a , b , respectively. Starting from thymidin-5-al 1 , the alkyl chain at C(5) is introduced via Wittig chemistry to selectively yield the ( Z )-olefin derivatives 3a and 3b ( Scheme 2 ). The secondary OH function at C(5) is then introduced by epoxidation followed by regioselective reduction of the epoxy derivatives 4a and 4b with diisobutylaluminium hydride. In the latter step, a kinetic resolution of the diastereoisomer mixture 4a and 4b occurs, yielding the alkylated nucleoside 2a and 2b , respectively, with (5 S )-configuration in high diastereoisomer purity (de=94%). The corresponding 2-deoxy-5-methylcytidine derivatives are obtained from the protected 5-alkylated thymidine derivatives 7a and 7b via known base interconversion processes in excellent yields ( Scheme 3 ). Application of the same strategy to the purine nucleoside 2-deoxyadenine to obtain 5- C -butyl-2-deoxyadenosine 25 proved to be difficult due to the sensitivity of the purine base to hydride-based reducing agents ( Scheme 4 ).